ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Дан произвольный треугольник ABC. Постройте прямую, проходящую через вершину B и делящую его на два треугольника, радиусы вписанных окружностей которых равны.

   Решение

Задачи

Страница: << 35 36 37 38 39 40 41 >> [Всего задач: 484]      



Задача 108914

Темы:   [ Построения одной линейкой ]
[ Замечательное свойство трапеции ]
[ Теорема Фалеса и теорема о пропорциональных отрезках ]
Сложность: 4-
Классы: 8,9

Даны две параллельные прямые и отрезок на одной из них. С помощью одной линейки разделите этот отрезок на три равные части.

Прислать комментарий     Решение

Задача 110759

Темы:   [ Построение треугольников по различным точкам ]
[ Биссектриса угла ]
[ Симметрия помогает решить задачу ]
[ Прямоугольные треугольники (прочее) ]
Сложность: 4-
Классы: 8,9

Восстановите прямоугольный треугольник ABC  (∠C = 90°)  по вершинам A, C и точке на биссектрисе угла B .

Прислать комментарий     Решение

Задача 115895

Темы:   [ Построение треугольников по различным элементам ]
[ Вписанный угол равен половине центрального ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Угол между касательной и хордой ]
Сложность: 4-
Классы: 8,9,10,11

Вокруг треугольника ABC описали окружность Ω. Пусть L и W – точки пересечения биссектрисы угла A со стороной BC и окружностью Ω соответственно. Точка O – центр описанной окружности треугольника ACL. Восстановите треугольник ABC, если даны окружность Ω и точки W и O.

Прислать комментарий     Решение

Задача 116199

Темы:   [ Построения (прочее) ]
[ Вписанные и описанные окружности ]
[ Метод ГМТ ]
[ ГМТ - окружность или дуга окружности ]
Сложность: 4-
Классы: 8,9

Дан произвольный треугольник ABC. Постройте прямую, проходящую через вершину B и делящую его на два треугольника, радиусы вписанных окружностей которых равны.

Прислать комментарий     Решение

Задача 52591

Темы:   [ Построения ]
[ Касающиеся окружности ]
[ Правильный (равносторонний) треугольник ]
Сложность: 4
Классы: 8,9

С помощью циркуля и линейки впишите в данную окружность три равных окружности, которые касались бы попарно между собой и данной окружности.

Прислать комментарий     Решение


Страница: << 35 36 37 38 39 40 41 >> [Всего задач: 484]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .