|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Материалы по этой теме:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи Из одной точки проведены к окружности две касательные. Длина каждой касательной равна 12, а расстояние между точками касания равно 14,4. Найдите радиус окружности.
Две стороны треугольника равны 2
Докажите, что любая диагональ четырёхугольника меньше половины его периметра.
Медиана AD и биссектриса CE прямоугольного треугольника
ABC (∠B = 90°) пересекаются в точке M. Точка M находится на расстоянии a от плоскости α и на расстоянии b от некоторой прямой m этой плоскости. Пусть M1 – ортогональная проекция точки M на плоскость α . Найдите расстояние от точки M1 до прямой m . Докажите, что при инверсии сохраняется угол между окружностями (между окружностью и прямой, между прямыми). Найдите сумму величин углов MAN, MBN, MCN, MDN и MEN, нарисованных на клетчатой бумаге так, как показано на рисунке 1.
В пирамиде ABCD длина отрезка BD равна Докажите неравенство (a + 1)(b + 1)(a + c)(b + c) ≥ 16abc для положительных значений переменных. Докажите, что при n > 1 число 11 + 3³ + ... + (2n – 1)2n – 1 делится на 2n, но не делится на 2n+1. |
Страница: << 27 28 29 30 31 32 33 >> [Всего задач: 332]
Про приведённый многочлен P(x) = xn + an–1xn–1 + ... + a1x + a0 с действительными коэффициентами известно, что при некотором натуральном
По кругу расставлено не менее четырёх неотрицательных чисел, в сумме равных
единице.
Докажите, что при n > 1 число 11 + 3³ + ... + (2n – 1)2n – 1 делится на 2n, но не делится на 2n+1.
Обозначим через [n]! произведение 1·11·111·...·11...11 – всего n сомножителей, в последнем – n единиц.
Страница: << 27 28 29 30 31 32 33 >> [Всего задач: 332] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|