ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

AL – биссектриса треугольника ABC, K – такая точка на стороне AC, что  CK = CL.  Прямая KL и биссектриса угла B пересекаются в точке P.
Докажите, что  AP = PL.

   Решение

Задачи

Страница: << 54 55 56 57 58 59 60 >> [Всего задач: 499]      



Задача 116485

Темы:   [ Свойства биссектрис, конкуррентность ]
[ Вписанные четырехугольники (прочее) ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
Сложность: 3+
Классы: 7,8,9

AL – биссектриса треугольника ABC, K – такая точка на стороне AC, что  CK = CL.  Прямая KL и биссектриса угла B пересекаются в точке P.
Докажите, что  AP = PL.

Прислать комментарий     Решение

Задача 52853

Темы:   [ Вспомогательная окружность ]
[ Вписанный угол, опирающийся на диаметр ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
Сложность: 3+
Классы: 8,9

Из точки A, расположенной вне окружности, проведены две касательные AM и AN (M и N — точки касания) и секущая, пересекающая окружность в точках P и Q. Пусть L — середина PQ. Докажите, что $ \angle$MLA = $ \angle$NLA.
Прислать комментарий     Решение


Задача 66582

Темы:   [ Пятиугольники ]
[ Правильные многоугольники ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Равнобедренные, вписанные и описанные трапеции ]
[ Средняя линия треугольника ]
Сложность: 3+
Классы: 8,9,10,11

В правильном пятиугольнике $ABCDE$ отмечена точка $F$ – середина $CD$. Серединный перпендикуляр к $AF$ пересекает $CE$ в точке $H$. Докажите, что прямая $AH$ перпендикулярна прямой $CE$.
Прислать комментарий     Решение


Задача 79381

Темы:   [ Пересекающиеся окружности ]
[ Вписанный угол равен половине центрального ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
Сложность: 3+
Классы: 9,10

На хорде AB окружности K с центром в точке O взята точка C. D — вторая точка пересечения окружности K с окружностью, описанной около $ \Delta$ACO. Доказать, что CD = CB.
Прислать комментарий     Решение


Задача 108684

Темы:   [ Пересекающиеся окружности ]
[ Вписанные четырехугольники (прочее) ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
Сложность: 3+
Классы: 8,9

Две окружности пересекаются в точках P и Q . Третья окружность с центром в точке P пересекает первую в точках A и B , а вторую – в точках C и D (см.рисунок). Докажите что углы AQD и BQC равны.
Прислать комментарий     Решение


Страница: << 54 55 56 57 58 59 60 >> [Всего задач: 499]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .