Страница:
<< 54 55 56 57
58 59 60 >> [Всего задач: 499]
|
|
Сложность: 3+ Классы: 7,8,9
|
AL – биссектриса треугольника ABC, K – такая точка на стороне AC, что CK = CL. Прямая KL и биссектриса угла B пересекаются в точке P.
Докажите, что AP = PL.
Из точки
A, расположенной вне окружности, проведены две
касательные
AM и
AN (
M и
N — точки касания) и секущая,
пересекающая окружность в точках
P и
Q. Пусть
L — середина
PQ.
Докажите, что
MLA =
NLA.
|
|
Сложность: 3+ Классы: 8,9,10,11
|
В правильном пятиугольнике $ABCDE$ отмечена точка $F$ – середина $CD$. Серединный перпендикуляр к $AF$ пересекает $CE$ в точке $H$. Докажите, что прямая $AH$ перпендикулярна прямой $CE$.
|
|
Сложность: 3+ Классы: 9,10
|
На хорде
AB окружности
K с центром в точке
O взята точка
C.
D —
вторая точка пересечения окружности
K с окружностью, описанной около
ACO. Доказать, что
CD =
CB.
Две окружности пересекаются в точках
P и
Q . Третья
окружность с центром в точке
P пересекает первую в точках
A и
B , а вторую – в точках
C и
D (см.рисунок).
Докажите что углы
AQD и
BQC равны.
Страница:
<< 54 55 56 57
58 59 60 >> [Всего задач: 499]