Processing math: 100%
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 8 задач
Версия для печати
Убрать все задачи

Решите уравнение:

1993 = 1 + 8 : (1 + 8 : (1 - 8 : (1 + 4 : (1 - 4 : (1 - 8 : x))))).

Вниз   Решение


Автор: Ботин Д.А.

Вся семья выпила по полной чашке кофе с молоком, причём Катя выпила четверть всего молока и шестую часть всего кофе. Сколько человек в семье?

ВверхВниз   Решение


а) Многоугольник обладает следующим свойством: если провести прямую через любые две точки, делящие его периметр пополам, то эта прямая разделит многоугольник на два равновеликих многоугольника. Верно ли, что многоугольник центрально симметричен?
б) Верно ли, что любая фигура, обладающая свойством, указанным в п.а), центрально симметрична?

ВверхВниз   Решение


Докажите, что из всех треугольников данного периметра 2p равносторонний имеет наибольшую плошадь.

ВверхВниз   Решение


Найдите какие-нибудь четыре попарно различных натуральных числа a, b, c, d, для которых числа  a² + 2cd + b²  и  c² + 2ab + d²  являются полными квадратами.

ВверхВниз   Решение


Имеется пять звеньев цепи по три кольца в каждом.
Какое наименьшее число колец нужно расковать и сковать, чтобы соединить эти звенья в одну цепь?

ВверхВниз   Решение


Даны шесть слов:
   ЗАНОЗА
   ЗИПУНЫ
   КАЗИНО
   КЕФАЛЬ
   ОТМЕЛЬ
   ШЕЛЕСТ
За один шаг можно заменить любую букву в любом из этих слов на любую другую (например, за один шаг можно получить из слова ЗАНОЗА слово ЗКНОЗА. Какое наименьшее число шагов нужно, чтобы сделать все слова одинаковыми (допускаются бессмысленные)?

ВверхВниз   Решение


Тело в форме тетраэдра ABCD с одинаковыми рёбрами поставлено гранью ABC на плоскость. Точка F – середина ребра CD, точка S лежит на прямой AB,  S ≠ A,  AB = BS.  В точку S сажают муравья. Как должен муравей ползти в точку F, чтобы пройденный им путь был минимальным?

Вверх   Решение

Задачи

Страница: << 63 64 65 66 67 68 69 >> [Всего задач: 352]      



Задача 65844

Темы:   [ Вписанные четырехугольники (прочее) ]
[ Три точки, лежащие на одной прямой ]
[ Симметрия помогает решить задачу ]
[ Вспомогательные равные треугольники ]
Сложность: 3+
Классы: 9,10,11

Четырёхугольник ABCD – вписанный,  AB = AD. На стороне BC взята точка M, а на стороне CD – точка N так, что угол MAN равен половине угла BAD.
Докажите, что  MN = BM + ND.

Прислать комментарий     Решение

Задача 107779

Темы:   [ Правильный (равносторонний) треугольник ]
[ Симметрия помогает решить задачу ]
[ Отрезок, видимый из двух точек под одним углом ]
[ Вспомогательные равные треугольники ]
[ ГМТ и вписанный угол ]
Сложность: 3+
Классы: 7,8,9

Дан равносторонний треугольник ABC. Для произвольной точки P внутри треугольника рассмотрим точки A' и C' пересечения прямых AP с BC и CP с BA соответственно. Найдите геометрическое место точек P, для которых отрезки AA' и CC' равны.

Прислать комментарий     Решение

Задача 108056

Темы:   [ Вписанные четырехугольники (прочее) ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Площадь четырехугольника ]
[ Вспомогательные равные треугольники ]
Сложность: 3+
Классы: 8,9

Автор: Фомин Д.

Во вписанном четырёхугольнике ABCD длины сторон BC и CD равны. Докажите, что площадь этого четырёхугольника равна  ½ AC² sin∠A.

Прислать комментарий     Решение

Задача 116520

Темы:   [ Правильный тетраэдр ]
[ Сечения, развертки и остовы (прочее) ]
[ Свойства медиан. Центр тяжести треугольника. ]
[ Равные треугольники. Признаки равенства (прочее) ]
Сложность: 3+
Классы: 10,11

Тело в форме тетраэдра ABCD с одинаковыми рёбрами поставлено гранью ABC на плоскость. Точка F – середина ребра CD, точка S лежит на прямой AB,  S ≠ A,  AB = BS.  В точку S сажают муравья. Как должен муравей ползти в точку F, чтобы пройденный им путь был минимальным?

Прислать комментарий     Решение

Задача 66993

Темы:   [ Правильный (равносторонний) треугольник ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Прямоугольный треугольник с углом в 30 ]
[ Вспомогательные равные треугольники ]
Сложность: 3+
Классы: 7,8,9

В четырёхугольнике ABCD известно, что AB=BC=CD, A=70 и B=100. Чему могут быть равны углы C и D?
Прислать комментарий     Решение


Страница: << 63 64 65 66 67 68 69 >> [Всего задач: 352]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .