ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Какова наибольшая длина арифметической прогрессии из натуральных чисел a1, a2, ..., an с разностью 2, обладающей свойством: Среди 18 деталей, выставленных в ряд, какие-то три подряд стоящие весят по 99 г, а все остальные – по 100 г. Двумя взвешиваниями на весах со стрелкой определите все 99-граммовые детали.
Точки A , B , C , D , A1 , B1 , C1 , D1
лежат на сфере. Отрезки AA1 , BB1 , CC1 , DD1
пересекаются в точке S , которая делит отрезок DD1 пополам.
Известно, что DD1 = 2
Докажите, что любая прямая, не параллельная оси ординат, имеет уравнение вида y = kx + l. Число k называется угловым коэффициентом прямой. Угловой коэффициент прямой с точностью до знака равен тангенсу острого угла, который образует прямая с осью x.
Для чисел а, b и с, отличных от нуля, выполняется равенство: a²(b + c – a) = b²(c + a – b) = c²(a + b – c). Следует ли из этого, что а = b = c? Изобразите на координатной плоскости множество всех точек, координаты x и у которых удовлетворяют неравенству За круглым столом сидят 30 человек – рыцари и лжецы (рыцари всегда говорят правду, а лжецы всегда лгут). Известно, что у каждого из них за этим же столом есть ровно один друг, причём у рыцаря этот друг – лжец, а у лжеца этот друг – рыцарь (дружба всегда взаимна). На вопрос "Сидит ли рядом с вами ваш друг?" сидевшие через одного ответили "Да". Сколько из остальных могли также ответить "Да"? |
Страница: << 91 92 93 94 95 96 97 >> [Всего задач: 1224]
Есть 40 гирек массой 1 г, 2 г, ..., 40 г. Из них выбрали 10 гирь чётной массы и положили на левую чашу весов. Затем выбрали 10 гирь нечётной массы и положили на правую чашу весов. Весы оказались в равновесии. Докажите, что на какой-нибудь чаше есть две гири с разностью масс в 20 г.
Можно ли все прямые на плоскости разбить на пары перпендикулярных прямых?
За круглым столом сидят 30 человек – рыцари и лжецы (рыцари всегда говорят правду, а лжецы всегда лгут). Известно, что у каждого из них за этим же столом есть ровно один друг, причём у рыцаря этот друг – лжец, а у лжеца этот друг – рыцарь (дружба всегда взаимна). На вопрос "Сидит ли рядом с вами ваш друг?" сидевшие через одного ответили "Да". Сколько из остальных могли также ответить "Да"?
На каждом из двух рукавов реки за километр до их слияния стоит по пристани, а ещё одна пристань стоит в 2 километрах после слияния (см. рисунок).
Верёвочку сложили пополам, потом ещё раз пополам, потом снова пополам, а затем все слои верёвочки разрезали в одном месте.
Страница: << 91 92 93 94 95 96 97 >> [Всего задач: 1224]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке