ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]() |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи
Через вершину A правильного треугольника ABC под
углом α ( 0<α<
Две окружности касаются друг друга внешним образом в точке A. Их общая касательная касается первой окружности в точке B, а второй в точке C. Прямая, проходящая через точки A и B, пересекает вторую окружность в точке D. Известно, что BC = 10 см, AB = 8 см. Найдите площадь треугольника BCD.
В пространстве даны две пересекающиеся сферы разных радиусов и точка A, принадлежащая обеим сферам. Докажите, что в пространстве существует точка B, обладающая следующим свойством: если через точки A и B провести произвольную окружность, то точки ее повторного пересечения с данными сферами будут равноудалены от B. Внутри выпуклого четырехугольника ABCD площади S
взята точка O, причем
AO2 + BO2 + CO2 + DO2 = 2S. Докажите, что
тогда ABCD — квадрат и O — его центр.
В треугольнике ABC угол A равен α, AB = AC = b. Через вершину B и центр описанной окружности проведена прямая до пересечения с прямой AC в точке D. Найдите BD. В пирамиде ABCD точки M, F и K – середины рёбер BC, AD и CD соответственно. На прямых AM и CF взяты соответственно точки P и Q, причём Пусть ABCD — выпуклый четырехугольник, K, L, M и N —
середины сторон AB, BC, CD и DA. Докажите, что точка пересечения
отрезков KM и LN является серединой этих отрезков, а также и серединой отрезка, соединяющего середины диагоналей.
Бизнесмен Борис Михайлович решил устроить с трактористом Васей гонки по шоссе. Поскольку его "Лексус" едет вдесятеро быстрее Васиного трактора, он дал Васе фору и выехал через час после Васи. После того, как Васин трактор проехал ровно половину запланированной трассы, у него отвалилась рессора, поэтому оставшуюся часть пути Вася проехал вдвое медленнее, чем первую. В результате встречи с Васиной рессорой Борису Михайловичу пришлось заехать в оказавшийся рядом сервис на 4 часа, после чего он продолжил путь вдвое медленнее, чем раньше. Докажите, что в результате он отстал от Васи не менее, чем на час.
В прямоугольном треугольнике ABC отрезок BH является высотой, опущенной на
гипотенузу, а BL — медианой в треугольнике BHC. Найдите угол LBC, если
известно, что BL = 4 и
AH =
В остроугольном треугольнике ABC наибольшая из
высот AH равна медиане BM. Докажите, что
Можно ли разрезать треугольник на три выпуклых многоугольника с попарно различным количеством сторон?
В окружность радиуса 3 вписана равнобедренная трапеция
с углом 45o при основании и высотой Докажите, что изодинамические центры лежат на прямой KO, где O — центр
описанной окружности, K — точка Лемуана.
Докажите что точки A(- 1; - 2), B(2; - 1) и C(8;1) лежат на одной прямой.
Докажите, что в треугольнике угол A острый тогда и
только тогда, когда ma > a/2.
Стозначное натуральное число n назовём необычным, если десятичная запись числа n³ заканчивается на n, а десятичная запись числа n² не заканчивается на n. Докажите, что существует не менее двух стозначных необычных чисел.
В равнобочную трапецию ABCD (
BC
Даны точки A(- 2;1), B(2;5) и C(4; - 1). Точка D лежит на продолжении медианы AM за точку M, причём четырёхугольник ABDC — параллелограмм. Найдите координаты точки D.
Внутри правильного тетраэдра ABCD расположены два шара радиусов 2R и 3R , касающиеся друг друга внешним образом, причём один шар вписан в трёхгранный угол тетраэдра с вершиной в точке A , а другой – в трёхгранный угол с вершиной в точке B . Найдите длину ребра этого тетраэдра. На доске написаны девять приведённых квадратных трёхчленов: x² + a1x + b1, x² + a2x + b2, ..., x² + a9x + b9. Известно, что последовательности a1, a2, ..., a9 и b1, b2, ..., b9 – арифметические прогрессии. Оказалось, что сумма всех девяти трёхчленов имеет хотя бы один корень. Какое наибольшее количество исходных трёхчленов может не иметь корней? |
Страница: << 12 13 14 15 16 17 18 >> [Всего задач: 133]
В вершинах 33-угольника записали в некотором порядке целые числа от 1 до 33. Затем на каждой стороне написали сумму чисел в её концах.
На доске написаны девять приведённых квадратных трёхчленов: x² + a1x + b1, x² + a2x + b2, ..., x² + a9x + b9. Известно, что последовательности a1, a2, ..., a9 и b1, b2, ..., b9 – арифметические прогрессии. Оказалось, что сумма всех девяти трёхчленов имеет хотя бы один корень. Какое наибольшее количество исходных трёхчленов может не иметь корней?
Предположим, что нашлись 15 простых чисел, образующих арифметическую прогрессию с разностью d. Докажите, что d > 30000.
Пусть a, b, c — различные простые числа. Докажите,
что числа
На диске хранится 2013 файлов размером 1 Мб, 2 Мб, 3 Мб, ..., 2012 Мб, 2013 Мб. Можно ли их распределить по трём папкам так, чтобы в каждой папке было одинаковое количество файлов и все три папки имели один и тот же размер (в Мб)?
Страница: << 12 13 14 15 16 17 18 >> [Всего задач: 133]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке