ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи

Во входном файле записана последовательность чисел в странном формате:
у каждого числа сначала записано количество цифр в этом числе, а потом через
пробел - сами цифры. Последовательность заканчивается числом 0.

В выходной файл нужно вывести сначала количество чисел в последовательности,
а потом - сами числа.

Количество чисел в последовательности не превышает 1000. В числах - не более
4-х знаков.

Примеры:
Пример 1
   input.txt                         output.txt              
2 2 7 3 3 5 1 0                      2 27 351                              

Пример 2
   input.txt                         output.txt              
1 1 0                                1 1                                    

Пример 3
   input.txt                         output.txt              
4 1 2 3 4 2 4 3 0                    2 1234 43                              

Вниз   Решение


Кузнечик умеет прыгать только ровно на 50 см. Он хочет обойти 8 точек, отмеченных на рисунке (сторона клетки равна 10 см). Какое наименьшее количество прыжков ему придётся сделать? (Разрешается посещать и другие точки плоскости, в том числе не узлы сетки. Начинать и заканчивать можно в любых точках.)

Вверх   Решение

Задачи

Страница: << 10 11 12 13 14 15 16 >> [Всего задач: 80]      



Задача 98331

Темы:   [ Четность перестановки ]
[ Обход графов ]
[ Перестройки ]
Сложность: 5+
Классы: 9,10,11

Автор: Фомин С.В.

  а) Четыре порта 1, 2, 3, 4 расположены (в этом порядке) на окружности круглого острова. Их связывает плоская сеть дорог, на которых могут быть перекрёстки, то есть точки, где пересекаются, сходятся или разветвляются дороги. На всех участках дорог введено одностороннее движение так, что, выехав от любого порта или перекрёстка, нельзя вернуться в него снова. Пусть  fij  означает число различных путей, идущих из порта i в порт j. Докажите неравенство   f14f23f13f24.
  б) Докажите, что если портов шесть: 1, 2, 3, 4, 5, 6 (по кругу в этом порядке), то   f16f25f34 + f15f24f36 + f14f26f35f16f24f35 + f15f26f34 + f14f25f36.

Прислать комментарий     Решение

Задача 109778

Темы:   [ Связность и разложение на связные компоненты ]
[ Обход графов ]
[ Наименьшее или наибольшее расстояние (длина) ]
[ Перебор случаев ]
Сложность: 5+
Классы: 9,10,11

Автор: Иванов И.

В стране 100 городов, некоторые пары городов соединены дорогами. Для каждых четырёх городов существуют хотя бы две дороги между ними. Известно, что не существует маршрута, проходящего по каждому городу ровно один раз. Докажите, что можно выбрать два города таким образом, чтобы каждый из оставшихся городов был соединен дорогой хотя бы с одним из двух выбранных городов.

Прислать комментарий     Решение

Задача 98166

Темы:   [ Наглядная геометрия в пространстве ]
[ Остовы многогранных фигур ]
[ Обход графов ]
[ Шахматная раскраска ]
[ Четность и нечетность ]
Сложность: 3
Классы: 6,7,8

Муравей ползает по проволочному каркасу куба, при этом он никогда не поворачивает назад.
Может ли случиться, что в одной вершине он побывал 25 раз, а в каждой из остальных – по 20 раз?

Прислать комментарий     Решение

Задача 116673

Темы:   [ Геометрия на клетчатой бумаге ]
[ Теорема Пифагора (прямая и обратная) ]
[ Обход графов ]
[ Доказательство от противного ]
Сложность: 3
Классы: 7,8,9

Кузнечик умеет прыгать только ровно на 50 см. Он хочет обойти 8 точек, отмеченных на рисунке (сторона клетки равна 10 см). Какое наименьшее количество прыжков ему придётся сделать? (Разрешается посещать и другие точки плоскости, в том числе не узлы сетки. Начинать и заканчивать можно в любых точках.)

Прислать комментарий     Решение

Задача 79614

Темы:   [ Задачи с ограничениями ]
[ Числовые таблицы и их свойства ]
[ Обход графов ]
Сложность: 3+
Классы: 9

В квадратной таблице из 9×9 клеток отмечены 9 клеток, лежащие на пересечении второй, пятой и восьмой строк со вторым, пятым и восьмым столбцами. Сколькими путями можно из левой нижней клетки попасть в правую верхнюю, двигаясь только по неотмеченным клеткам вверх или вправо?

Прислать комментарий     Решение

Страница: << 10 11 12 13 14 15 16 >> [Всего задач: 80]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .