ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

По кругу разложено чётное количество груш. Массы любых двух соседних отличаются не более чем на 1 г. Докажите, что можно все груши объединить в пары и разложить по кругу таким образом, чтобы массы любых двух соседних пар тоже отличались не более чем на 1 г.

   Решение

Задачи

Страница: << 15 16 17 18 19 20 21 >> [Всего задач: 488]      



Задача 78119

Темы:   [ Наименьший или наибольший угол ]
[ Вписанные и описанные окружности ]
Сложность: 4+
Классы: 9

В неравносторонний треугольник вписана окружность, точки касания которой со сторонами приняты за вершины второго треугольника. В этот второй треугольник снова вписана окружность, точки касания которой являются вершинами третьего треугольника; в него вписана третья окружность и т.д. Докажите, что в образовавшейся последовательности треугольников нет двух подобных.
Прислать комментарий     Решение


Задача 110102

Темы:   [ Выпуклая оболочка и опорные прямые (плоскости) ]
[ Прямоугольники и квадраты. Признаки и свойства ]
[ Комбинаторная геометрия (прочее) ]
Сложность: 4+
Классы: 7,8,9,10

На плоскости расположено [ n] прямоугольников со сторонами, параллельными осям координат. Известно, что любой прямоугольник пересекается хотя бы с n прямоугольниками. Доказать, что найдется прямоугольник, пересекающийся со всеми прямоугольниками.
Прислать комментарий     Решение


Задача 116693

Темы:   [ Упорядочивание по возрастанию (убыванию) ]
[ Задачи с неравенствами. Разбор случаев ]
[ Индукция (прочее) ]
[ Доказательство от противного ]
Сложность: 4+
Классы: 10

По кругу разложено чётное количество груш. Массы любых двух соседних отличаются не более чем на 1 г. Докажите, что можно все груши объединить в пары и разложить по кругу таким образом, чтобы массы любых двух соседних пар тоже отличались не более чем на 1 г.

Прислать комментарий     Решение

Задача 58057

Тема:   [ Наименьшее или наибольшее расстояние (длина) ]
Сложность: 4+
Классы: 8,9

Докажите, что в любом выпуклом пятиугольнике найдутся три диагонали, из которых можно составить треугольник.
Прислать комментарий     Решение


Задача 58062

Тема:   [ Наименьшая или наибольшая площадь (объем) ]
Сложность: 4+
Классы: 8,9

На плоскости расположено n точек, причем площадь любого треугольника с вершинами в этих точках не превосходит 1. Докажите, что все эти точки можно поместить в треугольник площади 4.
Прислать комментарий     Решение


Страница: << 15 16 17 18 19 20 21 >> [Всего задач: 488]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .