Страница:
<< 15 16 17 18
19 20 21 >> [Всего задач: 488]
В неравносторонний треугольник вписана окружность, точки касания
которой со сторонами приняты за вершины второго треугольника.
В этот второй треугольник снова вписана окружность, точки касания которой
являются вершинами третьего треугольника; в него вписана третья
окружность и т.д. Докажите, что в образовавшейся последовательности
треугольников нет двух подобных.
|
|
Сложность: 4+ Классы: 7,8,9,10
|
На плоскости расположено
[
n]
прямоугольников со
сторонами, параллельными осям координат. Известно, что любой прямоугольник
пересекается хотя бы с
n прямоугольниками. Доказать, что найдется
прямоугольник, пересекающийся со всеми прямоугольниками.
По кругу разложено чётное количество груш. Массы любых двух соседних отличаются не более чем на 1 г. Докажите, что можно все груши объединить в пары и разложить по кругу таким образом, чтобы массы любых двух соседних пар тоже отличались не более чем на 1 г.
Докажите, что в любом выпуклом пятиугольнике
найдутся три диагонали, из которых можно составить треугольник.
На плоскости расположено
n точек, причем площадь
любого треугольника с вершинами в этих точках не превосходит 1.
Докажите, что все эти точки можно поместить в треугольник площади 4.
Страница:
<< 15 16 17 18
19 20 21 >> [Всего задач: 488]