ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Автор: Жуков Г.

Существует ли натуральное число, у которого нечётное количество чётных натуральных делителей и чётное количество нечётных?

   Решение

Задачи

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 38]      



Задача 109671

Темы:   [ Объединение, пересечение и разность множеств ]
[ Мощность множества. Взаимно-однозначные отображения ]
Сложность: 4+
Классы: 8,9,10,11

Часть подмножеств некоторого конечного множества выделена. Каждое выделенное подмножество состоит в точности из 2k элементов ( k – фиксированное натуральное число). Известно, что в каждом подмножестве, состоящем не более чем из (k+1)2 элементов, либо не содержится ни одного выделенного подмножества, либо все в нем содержащиеся выделенные подмножества имеют общий элемент. Докажите, что все выделенные подмножества имеют общий элемент.
Прислать комментарий     Решение


Задача 35558

Темы:   [ Комбинаторика (прочее) ]
[ Принцип крайнего ]
[ Мощность множества. Взаимно-однозначные отображения ]
[ Упорядочивание по возрастанию (убыванию) ]
[ Оценка + пример ]
Сложность: 3
Классы: 9,10,11

Пусть M – конечное множество чисел. Известно, что среди любых трёх его элементов найдутся два, сумма которых принадлежит M.
Какое наибольшее число элементов может быть в M?

Прислать комментарий     Решение

Задача 61512

Темы:   [ Раскладки и разбиения ]
[ Производящие функции ]
[ Мощность множества. Взаимно-однозначные отображения ]
[ Формулы сокращенного умножения (прочее) ]
Сложность: 3+
Классы: 8,9,10,11

Обозначим через d(n) количество разбиений числа n на различные слагаемые, а через l(n) – на нечётные. Докажите равенства:

  а)  d(0) + d(1)x + d(2)x² + ...  =  (1 + x)(1 + x²)(1 + x³)...;

  б)  l(0) + l(1)x + l(2)x² + ...  =  (1 – x)–1(1 – x³)–1(1 – x5)–1...;

   в)  d(n) = l(n)   (n = 0, 1, 2, ...).

(Считается по определению, что  d(0) = l(0) = 1.)

Прислать комментарий     Решение

Задача 65392

Темы:   [ Теория алгоритмов (прочее) ]
[ Связность и разложение на связные компоненты ]
[ Мощность множества. Взаимно-однозначные отображения ]
Сложность: 3+
Классы: 8,9,10,11

Автор: Эвнин А.Ю.

Имеется несколько юношей, каждый из которых знаком с некоторыми девушками. Две свахи знают, кто с кем знаком. Одна сваха заявляет: "Я могу одновременно поженить всех брюнетов так, чтобы каждый из них женился на знакомой ему девушке!" Вторая сваха говорит: "А я могу устроить судьбу всех блондинок: каждая выйдет замуж за знакомого юношу!" Этот диалог услышал любитель математики, который сказал: "В таком случае можно сделать и то, и другое!" Прав ли он?

Прислать комментарий     Решение

Задача 116708

Темы:   [ Количество и сумма делителей числа ]
[ Четность и нечетность ]
[ Мощность множества. Взаимно-однозначные отображения ]
Сложность: 3+
Классы: 8,9

Автор: Жуков Г.

Существует ли натуральное число, у которого нечётное количество чётных натуральных делителей и чётное количество нечётных?

Прислать комментарий     Решение

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 38]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .