ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Определите наименьшее действительное число M, при котором неравенство |ab(a² – b²) + bc(b² – c²) + ca(c² – a²)| ≤ M(a² + b² + c²)² выполняется для любых действительных чисел a, b, c. На плоскости нарисовали кривые y = cos x и x = 100 cos(100y) и отметили все точки их пересечения, координаты которых положительны. Пусть a – сумма абсцисс, а b – сумма ординат этих точек. Найдите a/b. |
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 31]
Многочлен p и число a таковы, что для любого числа x верно равенство p(x) = p(a – x).
На плоскости нарисовали кривые y = cos x и x = 100 cos(100y) и отметили все точки их пересечения, координаты которых положительны. Пусть a – сумма абсцисс, а b – сумма ординат этих точек. Найдите a/b.
| 2x -
Решите систему
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 31]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке