|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи На столе лежат четыре одинаковые монеты. Разрешается двигать монеты, не отрывая их от стола. Нужно расположить (не пользуясь измерительными инструментами!) монеты так, чтобы можно было положить на стол пятую монету такого же размера, касающуюся этих четырёх. Пусть x, y, z – положительные числа и xyz(x + y + z) = 1. Найдите наименьшее значение выражения (x + y)(x + z). На плоскости даны n>1 точек. Двое по очереди соединяют еще не соединенную пару точек вектором одного из двух возможных направлений. Если после очередного хода какого-то игрока сумма всех нарисованных векторов нулевая, то выигрывает второй; если же очередной ход невозможен, а нулевой суммы не было, то выигрывает первый. Кто выигрывает при правильной игре? Дан многочлен P(x) степени 2003 с действительными коэффициентами, причем старший коэффициент равен 1. Имеется бесконечная последовательность целых чисел a1, a2, ..., такая, что P(a1) = 0, P(a2) = a1, P(a3) = a2 и т. д. Докажите, что не все числа в последовательности a1, a2, ... различны. На координатной плоскости задан график функции y = kx + b (см. рисунок). В той же координатной плоскости схематически постройте график функции y = kx² + bx. |
Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 81]
На рисунке изображены графики трёх квадратных трёчленов.
На параболе y = x² выбраны четыре точки A, B, C, D так, что прямые AB и CD пересекаются на оси ординат.
На координатной плоскости задан график функции y = kx + b (см. рисунок). В той же координатной плоскости схематически постройте график функции y = kx² + bx.
Докажите, что график многочлена
Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 81] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|