ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Дан тетраэдр ABCD. Точка X выбрана вне тетраэдра так, что отрезок XD пересекает грань ABC во внутренней точке. Обозначим через A', B', C' проекции точки D на плоскости XBC, XCA, XAB соответственно. Докажите, что  A'B' + B'C' + C'A' < DA + DB + DC.

   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 35]      



Задача 116839

Темы:   [ Центр масс ]
[ Сферы (прочее) ]
[ Правильные многогранники (прочее) ]
[ Векторы помогают решить задачу ]
[ Линейные зависимости векторов ]
[ Скалярное произведение ]
Сложность: 4+
Классы: 10,11

а) Внутри сферы находится некоторая точка A. Через A провели три попарно перпендикулярные прямые, которые пересекли сферу в шести точках.
Докажите, что центр масс этих точек не зависит от выбора такой тройки прямых.

б) Внутри сферы находится икосаэдр, его центр A не обязательно совпадает с центром сферы. Лучи, выпущенные из A в вершины икосаэдра, высекают 12 точек на сфере. Икосаэдр повернули так, что его центр остался на месте. Теперь лучи высекают 12 новых точек.
Докажите, что их центр масс совпадает с центром масс старых 12 точек.

Прислать комментарий     Решение

Задача 66960

Темы:   [ Усеченная пирамида ]
[ Сферы (прочее) ]
[ Радикальная ось ]
[ Гомотетия помогает решить задачу ]
[ Изогональное сопряжение ]
[ Конус (прочее) ]
[ Вспомогательные подобные треугольники ]
Сложность: 5+
Классы: 10,11

В усеченную треугольную пирамиду вписана сфера, касающаяся оснований в точках $T_1$, $T_2$. Пусть $h$ – высота пирамиды, $R_1$, $R_2$ – радиусы окружностей, описанных около ее оснований, $O_1$, $O_2$ – центры этих окружностей. Докажите, что $$ R_1R_2h^2=(R_1^2-O_1T_1^2)(R_2^2-O_2T_2^2). $$
Прислать комментарий     Решение


Задача 66494

Темы:   [ Многогранники и многоугольники (прочее) ]
[ Сферы (прочее) ]
Сложность: 6
Классы: 8,9,10,11

Женя красила шарообразное яйцо последовательно в пяти красках, погружая его в стакан с очередной краской так, чтобы окрашивалась ровно половина площади поверхности яйца (полсферы). В результате яйцо окрасилось полностью. Докажите, что одна из красок была лишней, то есть если бы Женя не использовала эту краску, а в другие краски погружала бы яйцо так же, то оно всё равно окрасилось бы полностью.
Прислать комментарий     Решение


Задача 116916

Темы:   [ Тетраэдр (прочее) ]
[ Перпендикулярность прямой и плоскости (прочее) ]
[ Сферы (прочее) ]
Сложность: 3+
Классы: 9,10

Дан тетраэдр ABCD. Точка X выбрана вне тетраэдра так, что отрезок XD пересекает грань ABC во внутренней точке. Обозначим через A', B', C' проекции точки D на плоскости XBC, XCA, XAB соответственно. Докажите, что  A'B' + B'C' + C'A' < DA + DB + DC.

Прислать комментарий     Решение

Задача 65724

Темы:   [ Куб ]
[ Свойства сечений ]
[ Сферы (прочее) ]
[ Принцип Дирихле (конечное число точек, прямых и т. д.) ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 4-
Классы: 10,11

На каждом из 12 рёбер куба отметили его середину. Обязательно ли сфера проходит через все отмеченные точки, если известно, что она проходит
  а) через какие-то 6 из отмеченных точек;
  б) через какие-то 7 из отмеченных точек?

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 35]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .