ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Материалы по этой теме:
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи На плоскости расположено n На отрезке длиной 1 расположены попарно не пересекающиеся
отрезки, сумма длин которых равна p. Обозначим эту систему
отрезков A. Пусть B — дополнительная система отрезков
(отрезки систем A и B не имеют общих внутренних точек и
полностью покрывают данный отрезок). Докажите, что существует
параллельный перенос T, для которого пересечение B и T(A)
состоит из отрезков, сумма длин которых не меньше p(1 - p)/2.
Два пирата, Билл и Джон, имея каждый по 74 золотые монеты, решили сыграть в такую игру: они по очереди будут выкладывать на стол монеты, за один ход – одну, две или три, а выиграет тот, кто положит на стол сотую по счёту монету. Начинает Билл. Кто может выиграть в такой игре, независимо от того, как будет действовать соперник? Доказать, что существует бесконечно много натуральных чисел,
не представимых в виде Даны точка X и правильный треугольник ABC. Докажите, что из отрезков
XA, XB и XC можно составить треугольник, причем этот треугольник
вырожденный тогда и только тогда, когда точка X лежит на описанной окружности
треугольника ABC (Помпею).
а) Стороны угла с вершиной C касаются окружности
в точках A и B. Из точки P, лежащей на окружности,
опущены перпендикуляры PA1, PB1 и PC1 на прямые BC, CA
и AB. Докажите, что
PC12 = PA1 . PB1 и
PA1 : PB1 = PB2 : PA2.
Миша стоит в центре круглой лужайке радиуса 100 метров. Каждую минуту он делает шаг длиной 1 метр. Перед каждым шагом он объявляет направление, в котором хочет шагнуть. Катя имеет право заставить его сменить направление на противоположное. Может ли Миша действовать так, чтобы в какой-то момент обязательно выйти с лужайки, или Катя всегда сможет ему помешать? Через вершины А и С треугольника АВС проведены прямые, перпендикулярные биссектрисе угла АВС. Они пересекают прямые СВ и ВА в точках К и М соответственно. Найдите длину АВ, если ВМ = 8 см, KC = 1 см и АВ > ВС. На прямой дано 50 отрезков. Докажите, что верно хотя бы одно из следующих утверждений:
Дан треугольник со сторонами 2, 3, 4. Найдите радиус наименьшего круга, из которого можно вырезать этот треугольник. Барон Мюнхаузен утверждает, что пустил шар от борта бильярда, имеющего форму правильного треугольника, так, что тот, отражаясь от бортов, прошёл через некоторую точку три раза в трёх различных направлениях и вернулся в исходную точку. Могут ли слова барона быть правдой? (Отражение шара от борта происходит по закону "угол падения равен углу отражения".) Решить в целых числах уравнение x² + y² = 4z – 1. Коля и Витя играют в следующую игру. На столе лежит куча из 100 камней. Мальчики делают ходы поочерёдно, а начинает Коля. Делая ход, играющий делит каждую кучку, в которой больше одного камня, на две меньшие кучки. Выигрывает тот, кто после своего хода оставляет кучки по одному камню в каждой. Сможет ли Коля сделать так, чтобы выиграть при любой игре Вити?
В четырёхугольнике ABCD диагонали AC и BD перпендикулярны и
пересекаются в точке P . Длина отрезка, соединяющего вершину C с
точкой M , являющейся серединой отрезка AD , равна Доказать, что уравнение x² + 1990 = y² не имеет решений в целых числах. Как разложить по семи кошелькам 127 рублевых бумажек так, чтобы любую сумму от 1 до 127 рублей можно было бы выдать, не открывая кошельков?
|
Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 598]
У двузначного числа первая цифра вдвое больше второй. Если к этому числу прибавить квадрат его первой цифры, то получится квадрат некоторого целого числа. Найдите исходное двузначное число.
Как разложить по семи кошелькам 127 рублевых бумажек так, чтобы любую сумму от 1 до 127 рублей можно было бы выдать, не открывая кошельков?
К числу 15 припишите слева и справа по одной цифре так, чтобы полученное число делилось на 15.
Сколько имеется четырёхзначных чисел, которые делятся на 45, а две средние цифры у них – 97?
Докажите, что произведение цифр любого натурального числа, большего 9, меньше самого числа.
Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 598]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке