|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи Из последовательности a, a + d, a + 2d, a + 3d, ..., являющейся бесконечной арифметической прогрессией, где d не равно 0, тогда и только тогда можно выбрать подпоследовательность, являющуюся бесконечной геометрической прогрессией, когда отношение a/d рационально. Докажите это. На каждой стороне квадрата взяли по одной точке. Оказалось, что эти точки являются вершинами прямоугольника, стороны которого параллельны диагоналям квадрата. Найдите периметр прямоугольника, если диагональ квадрата равна 6. Дан ромб со стороной a и острым углом α. На сторонах AB, BC и CA треугольника ABC построены во внешнюю сторону квадраты ABB1A2, BCC1B2 и CAA1C2. Саша выбрал натуральное число N > 1 и выписал в строчку в порядке возрастания все его натуральные делители: d1 < ... < ds (так что d1 = 1 и Докажите, что число людей, когда-либо живших на Земле и сделавших нечётное число рукопожатий, чётно. |
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 123]
У короля 19 баронов-вассалов. Может ли оказаться так, что у каждого вассального баронства одно, пять или девять соседних баронств?
Может ли в государстве, в котором из каждого города выходит три дороги, быть ровно 100 дорог?
Джон, приехав из Диснейленда, рассказывал, что там на заколдованном озере имеются семь островов, с каждого из которых ведет один, три или пять мостов. Верно ли, что хотя бы один из этих мостов обязательно выходит на берег озера?
Докажите, что число людей, когда-либо живших на Земле и сделавших нечётное число рукопожатий, чётно.
Можно ли нарисовать на плоскости 9 отрезков так, чтобы каждый пересекался ровно с тремя другими?
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 123] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|