ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 4 задачи
Версия для печати
Убрать все задачи

Точки D и E расположены на стороне AC треугольника ABC. Прямые BD и BE разбивают медиану AM треугольника ABC на три равных отрезка.
Найдите площадь треугольника BDE, если площадь треугольника ABC равна 1.

Вниз   Решение


Дан параллелограмм ABCD со сторонами AB = 2 и BC = 3. Найдите площадь этого параллелограмма, если известно, что диагональ AC перпендикулярна отрезку BE, соединяющему вершину B с серединой E стороны AD.

ВверхВниз   Решение


В треугольнике АВС из вершин А и В проведены биссектрисы, а из вершины С – медиана. Оказалось, что точки их попарного пересечения образуют прямоугольный равнобедренный треугольник. Найдите углы треугольника АВС.

ВверхВниз   Решение


Человек имеет 10 друзей и в течение нескольких дней приглашает некоторых из них в гости так, что компания ни разу не повторяется (в какой-то из дней он может не приглашать никого). Сколько дней он может так делать?

Вверх   Решение

Задачи

Страница: << 1 2 3 4 >> [Всего задач: 16]      



Задача 30708

Темы:   [ Правило произведения ]
[ Теория множеств (прочее) ]
Сложность: 2+
Классы: 6,7

Человек имеет 10 друзей и в течение нескольких дней приглашает некоторых из них в гости так, что компания ни разу не повторяется (в какой-то из дней он может не приглашать никого). Сколько дней он может так делать?

Прислать комментарий     Решение

Задача 35627

Темы:   [ Обыкновенные дроби ]
[ Принцип Дирихле (прочее) ]
[ Теория множеств (прочее) ]
[ Оценка + пример ]
Сложность: 3+
Классы: 7,8,9,10

Хозяйка испекла для гостей пирог. К ней может прийти либо 10, либо 11 человек. На какое наименьшее число кусков ей нужно заранее разрезать пирог так, чтобы его можно было поделить поровну как между 10, так и между 11 гостями?

Прислать комментарий     Решение

Задача 109780

Темы:   [ Рациональные и иррациональные числа ]
[ Тождественные преобразования ]
[ Теория множеств (прочее) ]
Сложность: 4
Классы: 9,10,11

Числовое множество M , содержащее 2003 различных положительных числа, таково, что для любых трех различных элементов a,b,c из M число a2+bc рационально. Докажите, что можно выбрать такое натуральное n , что для любого a из M число a рационально.
Прислать комментарий     Решение


Задача 34993

Темы:   [ Основная теорема арифметики. Разложение на простые сомножители ]
[ Разбиения на пары и группы; биекции ]
[ Классическая комбинаторика (прочее) ]
[ Теория множеств (прочее) ]
Сложность: 3
Классы: 8,9,10

Докажите, что нечётное число, являющееся произведением n различных простых сомножителей, можно представить в виде разности квадратов двух натуральных чисел ровно 2n–1 различными способами.

Прислать комментарий     Решение

Задача 78166

Темы:   [ Сочетания и размещения ]
[ Принцип крайнего ]
[ Подсчет двумя способами ]
[ Теория множеств (прочее) ]
Сложность: 5+
Классы: 10,11

В школе изучают 2n предметов. Все ученики учатся на 4 и 5. Никакие два ученика не учатся одинаково, ни про каких двух нельзя сказать, что один из них учится лучше другого. Доказать, что число учеников в школе не больше   .
(Мы считаем, что ученик p учится лучше ученика q, если у p оценки по всем предметам не ниже, чем у q, а по некоторым предметам – выше.)

Прислать комментарий     Решение

Страница: << 1 2 3 4 >> [Всего задач: 16]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .