Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 7 задач
Версия для печати
Убрать все задачи

Найти все числа, которые в 12 раз больше суммы своих цифр.

Вниз   Решение


Прямоугольники P и Q равновелики, но у P диагональ больше. Двумя копиями P можно накрыть Q. Докажите, что двумя копиями Q можно накрыть P.

ВверхВниз   Решение


а) Доказать, что для любых положительных чисел  x1, x2, ..., xk  (k > 3)  выполняется неравенство:

б) Доказать, что это неравенство ни для какого  k > 3  нельзя усилить, то есть доказать, что для каждого фиксированного k нельзя заменить двойку в правой части на большее число так, чтобы полученное неравенство было справедливо для любого набора из k положительных чисел.

ВверхВниз   Решение


Из полного 100-вершинного графа выкинули 98 рёбер. Доказать, что он остался связным.

ВверхВниз   Решение


В мешке изюма содержится 2001 изюминка общим весом 1001 г, причём ни одна изюминка не весит больше 1,002 г.
Докажите, что весь изюм можно разложить на две чаши весов так, чтобы они показали разность, не превосходящую 1 г.

ВверхВниз   Решение


Автор: Ратаров Д.

В трапецию $ABCD$ можно вписать окружность и около неё можно описать окружность. От трапеции остались: вершина $A$, центр вписанной окружности $I$, описанная окружность $\omega$ и ее центр $O$. Восстановите трапецию с помощью одной лишь линейки.

ВверхВниз   Решение


На конференции присутствуют 50 учёных, каждый из которых знаком по крайней мере с 25 участниками конференции.
Докажите, что найдутся четверо из них, которых можно усадить за круглый стол так, чтобы каждый сидел рядом со знакомыми ему людьми.

Вверх   Решение

Задачи

Страница: << 29 30 31 32 33 34 35 >> [Всего задач: 1008]      



Задача 30789

Тема:   [ Деревья ]
Сложность: 3+
Классы: 7,8

В стране Древляндия 101 город, и некоторые из них соединены дорогами. При этом каждые два города соединяет ровно один путь.
Сколько в этой стране дорог?

Прислать комментарий     Решение

Задача 30795

Тема:   [ Планарные графы. Формула Эйлера ]
Сложность: 3+
Классы: 7,8,9

В стране Озёрная семь озер, соединённых между собой десятью непересекающимися каналами, причём от каждого озера можно доплыть до любого другого. Сколько в этой стране островов?

Прислать комментарий     Решение

Задача 30797

Темы:   [ Планарные графы. Формула Эйлера ]
[ Подсчет двумя способами ]
Сложность: 3+
Классы: 8,9

Докажите, что для плоского графа справедливо неравенство  2E ≥ 3F.

Прислать комментарий     Решение

Задача 30810

Темы:   [ Степень вершины ]
[ Принцип Дирихле (прочее) ]
Сложность: 3+
Классы: 7,8

На конференции присутствуют 50 учёных, каждый из которых знаком по крайней мере с 25 участниками конференции.
Докажите, что найдутся четверо из них, которых можно усадить за круглый стол так, чтобы каждый сидел рядом со знакомыми ему людьми.

Прислать комментарий     Решение

Задача 30813

Тема:   [ Деревья ]
Сложность: 3+
Классы: 7,8

Дима нарисовал на доске семь графов, каждый из которых является деревом с шестью вершинами. Докажите, что среди них есть два изоморфных.

Прислать комментарий     Решение

Страница: << 29 30 31 32 33 34 35 >> [Всего задач: 1008]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .