ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Сформулируйте и докажите признак делимости на
  а) степень основания системы счисления (аналогичный признакам делимости на 100, 1000, ...).
  б) делитель основания системы счисления (аналогичный признакам делимости на 2 и на 5).

   Решение

Задачи

Страница: << 30 31 32 33 34 35 36 >> [Всего задач: 2440]      



Задача 30404

Темы:   [ Арифметика остатков (прочее) ]
[ Разбиения на пары и группы; биекции ]
[ Десятичная система счисления ]
Сложность: 3-
Классы: 7,8,9

Найдите последнюю цифру числа  1² + 2² + ... + 99².

Прислать комментарий     Решение

Задача 30604

Темы:   [ Деление с остатком ]
[ Классическая комбинаторика (прочее) ]
[ Перебор случаев ]
Сложность: 3-
Классы: 7,8,9

Сколько существует натуральных чисел n, меньших 10000, для которых  2nn²  делится на 7?

Прислать комментарий     Решение


Задача 30654

Тема:   [ Уравнения в целых числах ]
Сложность: 3-
Классы: 8,9

Решить в целых числах уравнение  (2x + y)(5x + 3y) = 7.

Прислать комментарий     Решение

Задача 30672

Тема:   [ Арифметика остатков (прочее) ]
Сложность: 3-
Классы: 8,9

Пусть  ka ≡ kb (mod kn).  Тогда  a ≡ b (mod n).

Прислать комментарий     Решение

Задача 30837

Тема:   [ Признаки делимости (прочее) ]
Сложность: 3-
Классы: 7,8

Сформулируйте и докажите признак делимости на
  а) степень основания системы счисления (аналогичный признакам делимости на 100, 1000, ...).
  б) делитель основания системы счисления (аналогичный признакам делимости на 2 и на 5).

Прислать комментарий     Решение

Страница: << 30 31 32 33 34 35 36 >> [Всего задач: 2440]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .