ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи По стороне правильного треугольника катится окружность радиуса, равного его высоте. Докажите, что угловая величина дуги, высекаемой на окружности сторонами треугольника, всегда равна 600. Решить в натуральных числах уравнение: На сторонах BC, CA и AB треугольника ABC взяты
точки A1, B1 и C1, причем
AC1 = AB1, BA1 = BC1 и CA1 = CB1.
Докажите, что A1, B1 и C1 — точки касания вписанной
окружности со сторонами.
Имеются три литровых банки и мерка объемом 100 мл. Первая банка пуста, во второй – 700 мл сладкого чая, в третьей – 800 мл сладкого чая. При этом во второй банке растворено 50 г сахара, а в третьей – 60 г сахара. Разрешается набрать из любой банки полную мерку чая и перелить весь этот чай в любую другую банку. Можно ли несколькими такими переливаниями добиться, чтобы первая банка была пуста, а количество сахара во второй банке равнялось количеству сахара в третьей банке? Докажите, что 2(x² + y²) ≥ (x + y)² при любых x и y. |
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 200]
Докажите, что 2(x² + y²) ≥ (x + y)² при любых x и y.
Докажите, что
Докажите, что x² + y² + z² ≥ xy + yz + zx при любых x, y, z.
Докажите, что если произведение двух положительных чисел больше их суммы, то сумма больше 4.
Найти наименьшее значение выражения x + 1/4x при положительных значениях x.
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 200]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке