ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи

Клетки доски 2001×2001 раскрашены в шахматном порядке в чёрный и белый цвета так, что угловые клетки чёрные. Для каждой пары разноцветных клеток рисуется вектор, идущий из центра чёрной клетки в центр белой. Докажите, что сумма нарисованных векторов равна 0.

Вниз   Решение


Прямая раскрашена в два цвета.
Докажите, что на ней найдутся такие три точки A, B и C, окрашенные в один цвет, что точка B является серединой отрезка AC.

Вверх   Решение

Задачи

Страница: << 9 10 11 12 13 14 15 >> [Всего задач: 158]      



Задача 89906

Темы:   [ Разрезания на части, обладающие специальными свойствами ]
[ Центральная симметрия помогает решить задачу ]
[ Свойства симметрии и центра симметрии ]
Сложность: 2+
Классы: 6,7

На прямоугольном торте лежит круглая шоколадка. Как разрезать торт на две равные части так, чтобы и шоколадка тоже разделилась ровно пополам?
Прислать комментарий     Решение


Задача 32096

Темы:   [ Раскраски ]
[ Центральная симметрия помогает решить задачу ]
[ Принцип Дирихле (конечное число точек, прямых и т. д.) ]
Сложность: 3-
Классы: 6,7,8,9

Прямая раскрашена в два цвета.
Докажите, что на ней найдутся такие три точки A, B и C, окрашенные в один цвет, что точка B является серединой отрезка AC.

Прислать комментарий     Решение

Задача 55705

Темы:   [ Окружности (прочее) ]
[ Свойства симметрии и центра симметрии ]
Сложность: 3-
Классы: 8,9

Докажите, что при центральной симметрии окружность переходит в окружность.

Прислать комментарий     Решение


Задача 35697

Темы:   [ Векторы (прочее) ]
[ Центральная симметрия помогает решить задачу ]
[ Шахматные доски и шахматные фигуры ]
Сложность: 3
Классы: 9,10

Клетки доски 2001×2001 раскрашены в шахматном порядке в чёрный и белый цвета так, что угловые клетки чёрные. Для каждой пары разноцветных клеток рисуется вектор, идущий из центра чёрной клетки в центр белой. Докажите, что сумма нарисованных векторов равна 0.

Прислать комментарий     Решение

Задача 56494

Темы:   [ Отношение площадей подобных треугольников ]
[ Свойства симметрии и центра симметрии ]
[ Параллелограмм Вариньона ]
Сложность: 3
Классы: 8,9

Точка O, лежащая внутри выпуклого четырёхугольника площади S, отражается симметрично относительно середин его сторон.
Найдите площадь четырёхугольника с вершинами в полученных точках.

Прислать комментарий     Решение

Страница: << 9 10 11 12 13 14 15 >> [Всего задач: 158]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .