ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 158]      



Задача 57844

Тема:   [ Центральная симметрия помогает решить задачу ]
Сложность: 4+
Классы: 9

В треугольнике ABC проведены медианы AF и CE. Докажите, что если $ \angle$BAF = $ \angle$BCE = 30o, то треугольник ABC правильный.
Прислать комментарий     Решение


Задача 57856

Тема:   [ Центральная симметрия помогает решить задачу ]
Сложность: 4+
Классы: 9

Даны непересекающиеся хорды AB и CD окружности и точка J на хорде CD. Постройте на окружности точку X так, чтобы хорды AX и BX высекали на хорде CD отрезок EF, делящийся точкой J пополам.
Прислать комментарий     Решение


Задача 57857

Темы:   [ Центральная симметрия помогает решить задачу ]
[ Построения (прочее) ]
Сложность: 5
Классы: 8,9

Через общую точку A окружностей S1 и S2 проведите прямую l так, чтобы разность длин хорд, высекаемых на l окружностями S1 и S2 имела заданную величину a.
Прислать комментарий     Решение


Задача 67156

Темы:   [ Центральная симметрия (прочее) ]
[ Вписанные и описанные окружности ]
[ Гомотетия помогает решить задачу ]
[ Поворот помогает решить задачу ]
[ Векторы помогают решить задачу ]
Сложность: 5
Классы: 8,9,10,11

На сторонах правильного девятиугольника $ABCDEFGHI$ во внешнюю сторону построили треугольники $XAB$, $YBC$, $ZCD$ и $TDE$. Известно, что углы $X$, $Y$, $Z$, $T$ этих треугольников равны $20^{\circ}$ каждый, а среди углов $XAB$, $YBC$, $ZCD$ и $TDE$ каждый следующий на $20^{\circ}$ больше предыдущего. Докажите, что точки $X$, $Y$, $Z$, $T$ лежат на одной окружности.

Прислать комментарий     Решение


Задача 97885

Темы:   [ Центральная симметрия помогает решить задачу ]
[ Шахматные доски и шахматные фигуры ]
[ Классическая комбинаторика (прочее) ]
[ Задачи с неравенствами. Разбор случаев ]
Сложность: 5
Классы: 8,9,10,11

Игра в "супершахматы" ведётся на доске размером 30×30, и в ней участвуют 20 разных фигур, каждая из которых ходит по своим правилам. Известно, однако, что
  1) любая фигура с любого поля бьёт не более 20 полей и
  2) если фигуру сдвинуть на несколько полей, то битые поля соответственно сдвигаются (может быть, исчезают за пределы поля).
Докажите, что
  а) любая фигура F бьёт данное поле Х не более, чем с 20 полей;
  б) можно расставить на доске все 20 фигур так, чтобы ни одна из них не била другую.

Прислать комментарий     Решение

Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 158]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .