ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 154]      



Задача 57854

Тема:   [ Центральная симметрия помогает решить задачу ]
Сложность: 4
Классы: 9

Даны четыре попарно непараллельные прямые и точка O, не лежащая на этих прямых. Постройте параллелограмм с центром O и вершинами, лежащими на данных прямых, — по одной на каждой.
Прислать комментарий     Решение


Задача 64470

Темы:   [ Центральная симметрия помогает решить задачу ]
[ Поворот помогает решить задачу ]
[ Точки Брокара ]
Сложность: 4
Классы: 9,10,11

а) В треугольник ABC вписаны треугольники A1B1C1 и A2B2C2 так, что  C1A1BCA1B1CAB1C1ABB2A2BCC2B2CA,
A2C2AB.  Докажите, что эти треугольники равны.

б) Внутри треугольника ABC взяли точки A1, B1, C1, A2, B2, C2 так, что A1 - на отрезке AB1, B1 - на отрезке BC1, C1 – на отрезке CA1, A2 – на отрезке AC2, B2 – на отрезке BA2, C2 – на отрезке CB2 и углы BAA1, CBB1, ACC1, CAA2, ABB2, BCC2 равны. Докажите, что треугольники A1B1C1 и A2B2C2 равны.

Прислать комментарий     Решение

Задача 79621

Темы:   [ Свойства симметрии и центра симметрии ]
[ Площадь. Одна фигура лежит внутри другой ]
[ Выпуклая оболочка и опорные прямые (плоскости) ]
[ Выпуклые многоугольники ]
[ Ромбы. Признаки и свойства ]
Сложность: 4
Классы: 9,10,11

Докажите, что в выпуклый центрально-симметричный многоугольник можно поместить ромб вдвое меньшей площади.
Прислать комментарий     Решение


Задача 109516

Темы:   [ Свойства симметрии и центра симметрии ]
[ Произведение длин отрезков хорд и длин отрезков секущих ]
[ Четыре точки, лежащие на одной окружности ]
[ Отрезок, видимый из двух точек под одним углом ]
[ Вписанные четырехугольники (прочее) ]
Сложность: 4
Классы: 8,9,10

Автор: Купцов Л.

Из центра симметрии двух равных пересекающихся окружностей проведены два луча, пересекающие окружности в четырех точках, не лежащих на одной прямой. Докажите, что эти точки лежат на одной окружности.
Прислать комментарий     Решение


Задача 65940

Темы:   [ Композиция центральных симметрий ]
[ Векторы помогают решить задачу ]
Сложность: 4+
Классы: 9,10,11

Автор: Тарасов А.

  Как известно, Луна вращается вокруг Земли. Будем считать, что Земля и Луна – это точки, а Луна вращается вокруг Земли по круговой орбите с периодом один оборот в месяц. Летающая тарелка находится в плоскости лунной орбиты. Она может перемещаться прыжками через Луну и Землю: из старого места (точки А) она моментально появляется в новом (в точке A') так, что в середине отрезка АA' находится или Луна, или Земля. Между прыжками летающая тарелка неподвижно висит в космическом пространстве.
  а) Определите, какое минимальное количество прыжков потребуется летающей тарелке, чтобы допрыгнуть из любой точки внутри лунной орбиты до любой другой точки внутри лунной орбиты.
  б) Докажите, что летающая тарелка, используя неограниченное количество прыжков, может допрыгнуть из любой точки внутри лунной орбиты до любой другой точки внутри лунной орбиты за любой промежуток времени, например, за секунду.

Прислать комментарий     Решение

Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 154]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .