Страница:
<< 1 2 3 4
5 6 7 >> [Всего задач: 158]
Докажите, что четырёхугольник, имеющий центр симметрии,—
параллелограмм.
|
|
Сложность: 3 Классы: 5,6,7,8
|
Сто сидений карусели расположены по кругу через равные
промежутки. Каждое покрашено в жёлтый, синий или красный цвет. Сиденья
одного и того же цвета расположены подряд и пронумерованы 1, 2, 3,
... по часовой стрелке. Синее сиденье № 7 противоположно красному
№ 3, а жёлтое № 7 — красному № 23. Найдите, сколько на карусели
жёлтых сидений, сколько синих и сколько красных.
Существует ли фигура, не имеющая ни осей симметрии, ни центров симметрии, но переходящая в себя при некотором повороте?
Вершины параллелограмма A1B1C1D1 лежат на сторонах параллелограмма ABCD (точка A1 лежит на стороне AB, точка B1 – на стороне BC и т. д.).
Докажите, что центры обоих параллелограммов совпадают.
Внутри треугольника ABC взята произвольная точка O и построены точки A1, B1 и C1, симметричные O относительно середин сторон BC, CA и AB. Докажите, что треугольники ABC и A1B1C1 равны и прямые AA1, BB1 и CC1 пересекаются в одной точке.
Страница:
<< 1 2 3 4
5 6 7 >> [Всего задач: 158]