ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Материалы по этой теме:
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи
Даны две непересекающиеся окружности. К ним проведены общие касательные, которые пересекаются в точке A отрезка, соединяющего центры окружностей. Радиус меньшей окружности равен R. Расстояние от точки A до центра окружности большего радиуса равно 6R. Точка A делит отрезок касательной, заключённый между точками касания, в отношении 1:3. Найдите площадь фигуры, ограниченной отрезками касательных и большими дугами окружностей, соединяющими точки касания.
Произведение двух положительных чисел больше их суммы. Докажите, что эта сумма больше 4. |
Страница: << 66 67 68 69 70 71 72 >> [Всего задач: 970]
Графики функций у = х² + ах + b и у = х² + сх + d пересекаются в точке с координатами (1, 1). Сравните а5 + d6 и c6 – b5.
Известно, что x, y и z – целые числа и xy + yz + zx = 1. Докажите, что число (1 + x²)(1 + y²)(1 + z²) является квадратом натурального числа.
Найдите все пары (p, q) простых чисел, разность пятых степеней которых также является простым числом.
Целое число. Доказать, что если
Из квадратного листа бумаги в клетку, содержащего целое число клеток, вырезали квадрат, содержащий целое число клеток так, что осталось 124 клетки. Сколько клеток мог содержать первоначальный лист бумаги?
Страница: << 66 67 68 69 70 71 72 >> [Всего задач: 970]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке