ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Дан правильный 4n-угольник A1A2...A4n площади S, причём  n > 1.  Найдите площадь четырёхугольника A1AnAn +1An+2.

   Решение

Задачи

Страница: << 14 15 16 17 18 19 20 >> [Всего задач: 101]      



Задача 107673

Темы:   [ Арифметическая прогрессия ]
[ Геометрия на клетчатой бумаге ]
[ Перегруппировка площадей ]
Сложность: 2+
Классы: 6,7,8

На клетчатой бумаге нарисована фигура (см. рис. 1): в верхнем ряду — одна клеточка, во втором сверху — три клеточки, в следующем ряду — 5 клеточек, и т.д., всего рядов — n. Докажите, что общее число клеточек есть квадрат некоторого числа.
                                     _
                                   _|_|_
                                 _|_|_|_|_
                               _|_|_|_|_|_|_
                              |_|_|_|_|_|_|_|
                           .....................
                         _ _ _ _           _ _ _ _
                        |_|_|_|_| ....... |_|_|_|_|
Рис. 1
Прислать комментарий     Решение


Задача 32899

Темы:   [ Правильные многоугольники ]
[ Отношение площадей треугольников с общим основанием или общей высотой ]
[ Перегруппировка площадей ]
Сложность: 3
Классы: 9,10,11

Дан правильный 4n-угольник A1A2...A4n площади S, причём  n > 1.  Найдите площадь четырёхугольника A1AnAn +1An+2.

Прислать комментарий     Решение

Задача 116026

Темы:   [ Равнобедренные, вписанные и описанные трапеции ]
[ Площадь трапеции ]
[ Перегруппировка площадей ]
[ Симметрия помогает решить задачу ]
Сложность: 3
Классы: 8,9

Равнобедренная трапеция описана около окружности. Докажите, что биссектриса тупого угла этой трапеции делит её площадь пополам.

Прислать комментарий     Решение

Задача 102314

Темы:   [ Метод координат на плоскости ]
[ Отношение площадей треугольников с общим основанием или общей высотой ]
[ Перегруппировка площадей ]
Сложность: 3+
Классы: 8,9,10

На координатной плоскости заданы точки A(0;2), B(1;7), C(10;7) и D(7;1). Найдите площадь пятиугольника ABCDE, где E — точка пересечения прямых AC и BD.
Прислать комментарий     Решение


Задача 105084

Темы:   [ Графики и ГМТ на координатной плоскости ]
[ Площади криволинейных фигур ]
[ Перегруппировка площадей ]
Сложность: 3+
Классы: 9,10,11

Точки A и B взяты на графике функции y=1/x, x>0. Из них опущены перпендикуляры на ось абсцисс, основания перпендикуляров - HA и HB; O - начало координат. Докажите, что площадь фигуры, ограниченной прямыми OA, OB и дугой AB, равна площади фигуры, ограниченной прямыми AHA, BHB, осью абсцисс и дугой AB.
Прислать комментарий     Решение


Страница: << 14 15 16 17 18 19 20 >> [Всего задач: 101]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .