ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

В последовательности троек целых чисел  (2, 3, 5),  (6, 15, 10), ... каждая тройка получается из предыдущей таким образом: первое число умножается на второе, второе – на третье, а третье – на первое, и полученные произведения дают новую тройку. Докажите, что ни одно из чисел, получаемых таким образом, не будет степенью целого числа: квадратом, кубом и т.д.

   Решение

Задачи

Страница: << 29 30 31 32 33 34 35 >> [Всего задач: 488]      



Задача 30665

Темы:   [ Уравнения в целых числах ]
[ Упорядочивание по возрастанию (убыванию) ]
[ Перебор случаев ]
Сложность: 3+
Классы: 8,9,10

Решить в целых числах уравнение  1/a + 1/b + 1/c = 1.

Прислать комментарий     Решение

Задача 30885

Темы:   [ Алгебраические неравенства (прочее) ]
[ Упорядочивание по возрастанию (убыванию) ]
Сложность: 3+
Классы: 8,9

k, l, m – натуральные числа. Докажите, что  2k+l + 2k+m + 2l+m ≤ 2k+l+m+1 + 1.

Прислать комментарий     Решение

Задача 31088

Темы:   [ Ориентированные графы ]
[ Принцип крайнего (прочее) ]
[ Принцип Дирихле (прочее) ]
Сложность: 3+
Классы: 6,7,8

В стране каждые два города соединены дорогой с односторонним движением.
Доказать, что существует город, из которого можно проехать в любой другой не более чем по двум дорогам.

Прислать комментарий     Решение

Задача 31296

Темы:   [ Уравнения в целых числах ]
[ Упорядочивание по возрастанию (убыванию) ]
[ Числовые неравенства. Сравнения чисел. ]
[ Обыкновенные дроби ]
[ Перебор случаев ]
Сложность: 3+
Классы: 6,7,8

a) Решить в целых числах уравнение   1/a + 1/b + 1/c = 1.
б)   1/a + 1/b + 1/c < 1  (a, b, c – натуральные числа). Доказать, что   1/a + 1/b + 1/c < 41/42.

Прислать комментарий     Решение

Задача 34846

Темы:   [ Основная теорема арифметики. Разложение на простые сомножители ]
[ Принцип крайнего (прочее) ]
[ Рекуррентные соотношения (прочее) ]
Сложность: 3+
Классы: 8,9

В последовательности троек целых чисел  (2, 3, 5),  (6, 15, 10), ... каждая тройка получается из предыдущей таким образом: первое число умножается на второе, второе – на третье, а третье – на первое, и полученные произведения дают новую тройку. Докажите, что ни одно из чисел, получаемых таким образом, не будет степенью целого числа: квадратом, кубом и т.д.

Прислать комментарий     Решение

Страница: << 29 30 31 32 33 34 35 >> [Всего задач: 488]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .