ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Существует ли выпуклый многогранник, любое сечение которого плоскостью, не проходящей через вершину, является многоугольником с нечетным числом сторон?

   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 33]      



Задача 35798

Темы:   [ Стереометрия (прочее) ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 2+
Классы: 10,11

Существует ли четырехугольная пирамида, у которой две противоположные боковые грани перпендикулярны основанию?
Прислать комментарий     Решение


Задача 34999

Темы:   [ Стереометрия (прочее) ]
[ Малые шевеления ]
Сложность: 2+
Классы: 9,10,11

Существует ли выпуклый многогранник, любое сечение которого плоскостью, не проходящей через вершину, является многоугольником с нечетным числом сторон?
Прислать комментарий     Решение


Задача 34949

Тема:   [ Стереометрия (прочее) ]
Сложность: 3
Классы: 10,11

Через каждую вершину тетраэдра проведена плоскость, содержащая центр окружности, описанной около противоположной грани, и перпендикулярная противоположной грани. Докажите, что эти 4 плоскости пересекаются в одной точке.
Прислать комментарий     Решение


Задача 35087

Тема:   [ Стереометрия (прочее) ]
Сложность: 3
Классы: 9,10,11

Известно, что сумма трех плоских углов при каждой вершине тетраэдра равна 1800. Докажите, что все его грани - равные треугольники.
Прислать комментарий     Решение


Задача 35159

Темы:   [ Стереометрия (прочее) ]
[ Разрезания на части, обладающие специальными свойствами ]
Сложность: 3
Классы: 8,9,10,11

Разбейте куб на три пирамиды.
Прислать комментарий     Решение


Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 33]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .