ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]() |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Треугольники ABC и BAD равны, причём точки C и D лежат по разные стороны от прямой AB. Докажите, что:
С помощью циркуля и линейки постройте треугольник по стороне, медиане, проведённой к этой стороне, и высоте, проведённой к другой стороне.
С помощью циркуля и линейки постройте треугольник по двум высотам и углу, из вершины которого проведена одна из них.
Существуют ли в пространстве четыре точки A, B, C, D такие, что AB = CD = 8 см, AC = BD = 10 см, AD = BC = 13 см? В некотором выпуклом n-угольнике (n > 3) все расстояния между вершинами различны. На окружности S с диаметром AB взята точка C, из точки C опущен
перпендикуляр CH на прямую AB. Докажите, что общая хорда окружности S и
окружности S1 с центром C и радиусом CH делит отрезок CH пополам.
Две окружности пересекаются в точках A и B. Через точку K первой окружности проводятся прямые KA и KB, вторично пересекающие другую окружность в точках P и Q соответственно. Докажите, что хорда PQ окружности перпендикулярна диаметру KM первой окружности. Докажите, что любой выпуклый многоугольник площади 1 можно поместить в прямоугольник площади 2. |
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 133]
Выпуклый n-угольник разрезан на три выпуклых многоугольника. У одного из них n сторон, у другого – больше чем n, у третьего – меньше чем n.
Существует ли выпуклый семиугольник, который можно разрезать на 2011 равных треугольников?
В выпуклом 2002-угольнике провели несколько диагоналей, не пересекающихся внутри 2002-угольника. В результате 2002-угольник разделился на 2000 треугольников. Могло ли случиться, что ровно у половины этих треугольников все стороны являются диагоналями этого 2002-угольника?
Докажите, что любой выпуклый многоугольник площади 1 можно поместить в прямоугольник площади 2.
Доказать, что максимальное количество сторон выпуклого многоугольника, стороны которого лежат на диагоналях данного выпуклого 100-угольника, не больше 100.
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 133]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке