ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Ссылки по теме:
Статья Н. Виленкина "Комбинаторика"

Материалы по этой теме:


Подтемы:
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

На книжной полке стоят 30 томов энциклопедии в некотором порядке. За одну операцию разрешается менять местами любые два соседних тома. За какое наименьшее число операций можно гарантированно выстроить все тома в правильном порядке (с первого по тридцатый слева направо) независимо от начального положения?

   Решение

Задачи

Страница: << 18 19 20 21 22 23 24 >> [Всего задач: 501]      



Задача 98014

Темы:   [ Сочетания и размещения ]
[ Мощность множества. Взаимно-однозначные отображения ]
[ Четность и нечетность ]
Сложность: 4-
Классы: 8,9,10

Автор: Фомин С.В.

В кооперативе из 11 человек имеется партячейка. На каждом собрании ячейки происходит либо приём одного члена в партию, либо исключение из партии одного человека. В партячейке не может быть меньше трёх человек. Возвращаться к какому-либо из прежних составов партячейки запрещено уставом. Может ли к какому-то моменту оказаться, что все варианты состава ячейки реализованы?

 
Прислать комментарий     Решение

Задача 98424

Темы:   [ Раскладки и разбиения ]
[ Геометрические интерпретации в алгебре ]
[ Подсчет двумя способами ]
Сложность: 4-
Классы: 8,9

На доске написано несколько целых положительных чисел: a0, a1, a2, ... , an. Пишем на другой доске следующие числа: b0 – сколько всего чисел на первой доске, b1 – сколько там чисел, больших единицы, b2 – сколько чисел, больших двойки, и т.д., пока получаются положительные числа. На этом заканчиваем – нули не пишем. На третьей доске пишем числа c0, c1, c2, ... , построенные по числам второй доски по тому же правилу, по которому числа b0, b1, b2, ... строились по числам первой доски. Докажите, что наборы чисел на первой и третьей досках совпадают.

Прислать комментарий     Решение

Задача 98612

Темы:   [ Перестановки и подстановки (прочее) ]
[ Десятичная система счисления ]
[ Четность и нечетность ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 4-
Классы: 10,11

Сто номерков выложили в ряд в порядке возрастания: 00, 01, 02, 03, ..., 99. Затем номерки переставили так, что каждый следующий номерок стал получаться из предыдущего увеличением или уменьшением ровно одной из цифр на 1 (например, после 29 может идти 19, 39 или 28, а 30 или 20 – не может). Какое наибольшее число номерков могло остаться на своих местах?

Прислать комментарий     Решение

Задача 109923

Темы:   [ Раскладки и разбиения ]
[ Упорядочивание по возрастанию (убыванию) ]
[ Разбиения на пары и группы; биекции ]
[ Задачи с неравенствами. Разбор случаев ]
Сложность: 4-
Классы: 8,9

а) Имеются 300 яблок, любые два из которых различаются по весу не более чем в 2 раза.
Докажите, что их можно разложить в пакеты по два яблока так, чтобы любые два пакета различались по весу не более чем в 1,5 раза.

б) Имеются 300 яблок, любые два из которых различаются по весу не более чем в 3 раза.
Докажите, что их можно разложить в пакеты по четыре яблока так, чтобы любые два пакета различались по весу не более чем в 1,5 раза.

Прислать комментарий     Решение

Задача 35024

Темы:   [ Перестановки и подстановки ]
[ Процессы и операции ]
[ Инварианты и полуинварианты ]
Сложность: 4
Классы: 8,9,10

На книжной полке стоят 30 томов энциклопедии в некотором порядке. За одну операцию разрешается менять местами любые два соседних тома. За какое наименьшее число операций можно гарантированно выстроить все тома в правильном порядке (с первого по тридцатый слева направо) независимо от начального положения?

Прислать комментарий     Решение

Страница: << 18 19 20 21 22 23 24 >> [Всего задач: 501]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .