ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Рассматриваются всевозможные треугольники с целочисленными сторонами и периметром 2000, а также всевозможные треугольники с целочисленными сторонами и периметром 2003. Каких треугольников больше?

   Решение

Задачи

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 38]      



Задача 35017

Темы:   [ Мощность множества. Взаимно-однозначные отображения ]
[ Парадоксы ]
Сложность: 3
Классы: 7,8,9

У деда Мороза в мешке бесконечное число конфет, занумерованных натуральными числами. За минуту до Нового года он начинает дарить детям конфеты. Сначала он дарит детям конфету с номером 1. За полминуты до Нового года он дарит 2 конфеты с номерами 2 и 3, а конфету с номером 1 отбирает, за 15 секунд до Нового года он дарит 4 конфеты с номерами 4, 5, 6, 7, а 2 конфеты с номерами 2 и 3 отбирает, и т.д., за 1/2n долю минуты до Нового года дед Мороз дарит 2n конфет с номерами от 2n до 2n+1-1 и отбирает 2n-1 конфет с номерами от 2n-1 до 2n-1. Сколько конфет будет у деда Мороза и у детей в момент встречи Нового года?
Прислать комментарий     Решение


Задача 35123

Темы:   [ Мощность множества. Взаимно-однозначные отображения ]
[ Неравенство треугольника (прочее) ]
Сложность: 3
Классы: 8,9

Рассматриваются всевозможные треугольники с целочисленными сторонами и периметром 2000, а также всевозможные треугольники с целочисленными сторонами и периметром 2003. Каких треугольников больше?

Прислать комментарий     Решение

Задача 98241

Тема:   [ Мощность множества. Взаимно-однозначные отображения ]
Сложность: 3+
Классы: 8,9

Автор: Шень А.Х.

Полоска 1×10 разбита на единичные квадраты. В квадраты записывают числа 1, 2, ..., 10. Сначала в один какой-нибудь квадрат записывают число 1, затем число 2 записывают в один из соседних квадратов, затем число 3 – в один из соседних с уже занятыми и т. д. (произвольными являются выбор первого квадрата и выбор соседа на каждом шагу). Сколькими способами это можно проделать?

Прислать комментарий     Решение

Задача 64855

Темы:   [ Мощность множества. Взаимно-однозначные отображения ]
[ Разбиения на пары и группы; биекции ]
Сложность: 4
Классы: 7,8,9,10,11

Петя подсчитал количество всех возможных m-буквенных слов, в записи которых могут использоваться только четыре буквы T, O, W и N, причём в каждом слове букв T и O поровну. Вася подсчитал количество всех возможных 2m-буквенных слов, в записи которых могут использоваться только две буквы T и O, и в каждом слове этих букв поровну. У кого слов получилось больше? (Слово – это любая последовательность букв.)

Прислать комментарий     Решение

Задача 73735

Темы:   [ Мощность множества. Взаимно-однозначные отображения ]
[ Задачи с ограничениями ]
[ Системы точек и отрезков (прочее) ]
[ Правило произведения ]
Сложность: 5
Классы: 10,11

а) На рисунке слева изображены шесть точек, которые лежат по три на четырёх прямых. Докажите, что можно 24 разными способами отобразить это множество из шести точек на себя так, чтобы каждые три точки, лежащие на одной прямой, отобразились в три точки, лежащие на одной прямой.

б) На рисунке справа девять точек лежат по три на девяти прямых, причём через каждую точку проходит по три таких прямых. Эти девять точек и девять прямых образуют знаменитую конфигурацию Паскаля. Сколькими способами можно множество наших девяти точек отобразить на себя так, чтобы каждая тройка точек, лежащая на одной из девяти наших прямых, отобразилась на тройку точек, которая тоже лежит на некоторой прямой из нашей конфигурации?

в) Тот же вопрос для конфигурации Дезарга (из десяти точек и десяти прямых), изображённой на нижнем рисунке.

Прислать комментарий     Решение

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 38]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .