ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи В круге радиуса r проведена хорда, равная a. Найдите площадь получившегося сегмента. На стороне BC треугольника ABC как на диаметре построена
окружность, пересекающая стороны AB и AC в точках M и N. Докажите, что x + 1/x ≥ 2 при x > 0. На окружности даны 10 точек. Сколькими способами можно провести пять отрезков, не имеющих общих точек, с концами в данных точках? Даны две концентрические окружности. Хорда большей из них касается меньшей и имеет длину 2. |
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 75]
В круге радиуса r проведена хорда, равная a. Найдите площадь получившегося сегмента.
В круге с центром O проведена хорда AB. Вычислите площадь получившегося сегмента, если ∠AOB = α, а радиус круга равен r.
Даны две концентрические окружности. Хорда большей из них касается меньшей и имеет длину 2.
Каждая из трёх окружностей радиуса r касается двух других. Найдите площадь фигуры, расположенной вне окружностей и ограниченной их дугами, заключёнными между точками касания.
Даны два одинаковых пересекающихся круга. Отношение расстояния между их центрами к радиусу равно 2m . Третий круг касается внешним образом первых двух и их общей касательной. Найдите отношение площади общей части первых двух кругов к площади третьего круга.
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 75]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке