Страница: 1
2 3 4 5 6 7 >> [Всего задач: 79]
Докажите, что медианы треугольника
ABC пересекаются в одной
точке и делятся ею в отношении 2 : 1, считая от вершины.
|
|
Сложность: 3- Классы: 10,11
|
В выпуклом четырехугольнике
ABCD взят четырехугольник
KLMN, образованный
центрами тяжести треугольников
ABC,
BCD,
DBA и
CDA. Доказать, что
прямые, соединяющие середины противоположных сторон четырехугольника
ABCD,
пересекаются в той же точке, что и прямые, соединяющие середины противоположных
сторон четырехугольника
KLMN.
Из круга S радиуса 1 вырезали круг S' радиуса 1/2, граница которого
проходит через центр исходного круга.
Определите, где находится центр тяжести полученной фигуры F.
а) Докажите, что центр масс существует и единствен для любой
системы точек.
б) Докажите, что если
X — произвольная точка, а
O —
центр масс точек
X1,...,
Xn с массами
m1,...,
mn,
то
=
(
m1 +...+
mn).
Докажите, что центр масс системы точек
X1,...,
Xn,
Y1,...,
Ym с массами
a1,...,
an,
b1,...,
bm
совпадает с центром масс двух точек — центра масс
X первой
системы с массой
a1 +...+
an и центра масс
Y второй системы
с массой
b1 +...+
bm.
Страница: 1
2 3 4 5 6 7 >> [Всего задач: 79]