Страница:
<< 1 2 3
4 5 6 7 >> [Всего задач: 89]
На доске записан ряд из чисел и звёздочек: 5, *, *, *, *, *, *, 8. Замените звёздочки числами так, чтобы сумма каждых трёх чисел, стоящих подряд, равнялась 20.
На доске написано несколько положительных чисел, каждое из которых равно полусумме остальных. Сколько чисел написано на доске?
Десять человек сидят за круглым столом. Сумма в десять долларов должна быть распределена среди них так, чтобы каждый получил половину от той суммы, которую два его соседа получили вместе. Однозначно ли это правило задает распределение денег?
|
|
Сложность: 3- Классы: 8,9,10
|
Составьте систему, состоящую из двух линейных уравнений, для которой строки (1, 1, 1, 1) и (1, 2, 2, 1) служат решениями.
|
|
Сложность: 3- Классы: 9,10
|
Прямые у = kx + b, у = 2kx + 2b и у = bx + k различны и пересекаются в одной точке. Какими могут быть ее координаты?
Страница:
<< 1 2 3
4 5 6 7 >> [Всего задач: 89]