ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

На стол положили несколько одинаковых листов бумаги прямоугольной формы. Оказалось, что верхний лист покрывает больше половины площади каждого из остальных листов. Можно ли в таком случае воткнуть булавку так, чтобы она проколола все прямоугольники?

   Решение

Задачи

Страница: << 13 14 15 16 17 18 19 >> [Всего задач: 1341]      



Задача 35390

Темы:   [ Покрытия ]
[ Площадь (прочее) ]
Сложность: 2+
Классы: 9,10

На стол положили несколько одинаковых листов бумаги прямоугольной формы. Оказалось, что верхний лист покрывает больше половины площади каждого из остальных листов. Можно ли в таком случае воткнуть булавку так, чтобы она проколола все прямоугольники?
Прислать комментарий     Решение


Задача 35433

Темы:   [ Комбинаторная геометрия (прочее) ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 2+
Классы: 5,6,7

Можно ли в квадрате 10*10 расставить 12 кораблей 1*4 (для игры типа "морской бой") так, чтобы корабли не соприкасались друг с другом (даже вершинами)?
Прислать комментарий     Решение


Задача 35610

Тема:   [ Разные задачи на разрезания ]
Сложность: 2+
Классы: 6,7,8

Можно ли квадратный лист бумаги размером 2*2 сложить так, чтобы его можно было разрезать на 4 квадрата 1*1 одним взмахом ножницами?
Прислать комментарий     Решение


Задача 58263

Тема:   [ Разбиение фигур на отрезки ]
Сложность: 2+
Классы: 8,9

Докажите, что четырехугольник (с границей и внутренностью) можно разбить на отрезки, т. е. представить в виде объединения непересекающихся отрезков.
Прислать комментарий     Решение


Задача 89906

Темы:   [ Разрезания на части, обладающие специальными свойствами ]
[ Центральная симметрия помогает решить задачу ]
[ Свойства симметрии и центра симметрии ]
Сложность: 2+
Классы: 6,7

На прямоугольном торте лежит круглая шоколадка. Как разрезать торт на две равные части так, чтобы и шоколадка тоже разделилась ровно пополам?
Прислать комментарий     Решение


Страница: << 13 14 15 16 17 18 19 >> [Всего задач: 1341]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .