ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Материалы по этой теме:
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Может ли некоторое сечение куба быть правильным пятиугольником? Решение |
Страница: << 37 38 39 40 41 42 43 >> [Всего задач: 507]
а) Вершины правильного 10-угольника закрашены чёрной и белой краской через одну. Двое играют в следующую игру. Каждый по очереди проводит отрезок, соединяющий вершины одинакового цвета. Эти отрезки не должны иметь общих точек (даже концов) с проведенными ранее. Побеждает тот, кто сделал последний ход. Кто выигрывает при правильной игре: начинающий игру или его партнер?
Какое наибольшее количество непересекающихся диагоналей можно провести в выпуклом n-угольнике (допускаются диагонали, имеющие общую вершину)?
Вокруг окружности описан пятиугольник, длины сторон которого – целые числа, а первая и третья стороны равны 1.
Может ли некоторое сечение куба быть правильным пятиугольником?
Страница: << 37 38 39 40 41 42 43 >> [Всего задач: 507] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|