ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи
Хорда пересекает диаметр под углом в 30o и делит его на два отрезка, равные 2 и 6. Найдите расстояние от центра окружности до этой хорды.
Сколькими способами можно составить расписание первого тура чемпионата России по футболу, в котором играет 16 команд? (Является важным, кто хозяин поля.) Решите уравнение На сфере, радиус которой равен 2, расположены три окружности радиуса 1, каждая из которых касается двух других. Найдите радиус окружности меньшей, чем данная, которая также расположена на данной сфере и касается каждой из данных окружностей. Дана сфера В правильной треугольной призме BCDB1C1D1 ( BB1 || CC1 || DD1 ) известно, что BB1:BC=5:3 . На боковых рёбрах BB1 , CC1 и DD1 взяты точки L , M и N соответственно, причём BL:LB1=3:2 , CM:MC1=2:3 , DN:ND1=1:4 . Найдите двугранный угол между плоскостями LMN и BCD . Точка A лежит внутри правильного десятиугольника X1...X10, а точка B — вне его. Пусть a = На поверхности сферической планеты расположены четыре материка, отделённые друг от друга океаном. Назовем точку океана особой, если для нее найдутся не менее трёх ближайших (находящихся от нее на равных расстояниях) точек суши, причём все на разных материках. Какое наибольшее число особых точек может быть на этой планете? Сколько четырёхзначных чисел можно составить, используя цифры 1, 2, 3, 4 и 5, если: Найдите сумму коэффициентов при чётных степенях в многочлене, который получается из выражения f(x) = (x³ – x + 1)100 в результате раскрытия скобок и приведения подобных слагаемых. |
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 52]
Найдите сумму всех коэффициентов многочлена (x² – 3x + 1)100 после раскрытия скобок и приведения подобных членов.
p(x) – многочлен с целыми коэффициентами. Известно, что для некоторых целых a и b выполняется равенство: p(a) – p(b) = 1.
Даны многочлены P1, P2, ... , P5, имеющие суммы коэффициентов, равные 1, 2, 3, 4, 5 соответственно.
Найдите сумму коэффициентов при чётных степенях в многочлене, который получается из выражения f(x) = (x³ – x + 1)100 в результате раскрытия скобок и приведения подобных слагаемых.
Докажите, что если в выражении (x² – x + 1)2014 раскрыть скобки и привести подобные слагаемые, то какой-нибудь коэффициент полученного многочлена будет отрицательным.
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 52]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке