Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 11 задач
Версия для печати
Убрать все задачи

Докажите, что площадь треугольника равна его полупериметру, умноженному на радиус вписанной окружности.

Вниз   Решение


Сумма сторон AB и BC треугольника ABC равна 11,  угол B равен 60°, радиус вписанной окружности равен  .  Известно также, что сторона AB больше стороны BC. Найдите высоту треугольника, опущенную из вершины A.

ВверхВниз   Решение


Решите уравнение sin4x + cos4x = a.

ВверхВниз   Решение


Докажите неравенство:  2n > n.

ВверхВниз   Решение


Две окружности пересекаются в точках А и В. Через точку В проведена прямая, пересекающая окружности в точках М и N так, что АВ – биссектриса треугольника МАN. Докажите, что отношение отрезков ВМ и BN равно отношению радиусов окружностей.

ВверхВниз   Решение


Рита, Люба и Варя решали задачи. Чтобы дело шло быстрее, они купили конфет и условились, что за каждую решённую задачу девочка, решившая её первой, получает четыре конфеты, решившая второй  — две, а решившая последней  — одну. Девочки говорят, что каждая из них решила все задачи и получила 20 конфет, причём одновременных решений не было. Они ошибаются. Как вы думаете, почему?

ВверхВниз   Решение


Даны три попарно перпендикулярные прямые. Четвёртая прямая образует с данными углы α , β , γ соответственно. Докажите, что

cos 2α + cos 2β + cos 2γ = 1.

ВверхВниз   Решение


В множестве, состоящем из n элементов, выбрано 2n–1 подмножеств, каждые три из которых имеют общий элемент.
Докажите, что все эти подмножества имеют общий элемент.

ВверхВниз   Решение


Ребус-система. Расшифруйте числовой ребус — систему
rebus-sistema
(разным буквам соответствуют разные цифры, а одинаковым — одинаковые).

ВверхВниз   Решение


Две окружности пересекаются в точках A и B. Точка X лежит на прямой AB, но не на отрезке AB. Докажите, что длины всех касательных, проведенных из точки X к окружностям, равны.

ВверхВниз   Решение


Яблоко плавает на воде так, что 1/5 часть яблока находится над водой, а 4/5 – под водой. Под водой яблоко начинает есть рыбка со скоростью 120 г/мин., одновременно над водой яблоко начинает есть птичка со скоростью 60 г/мин. Какая часть яблока достанется рыбке, а какая – птичке?

Вверх   Решение

Задачи

Страница: << 2 3 4 5 6 7 8 [Всего задач: 40]      



Задача 88188

Темы:   [ Неравенство треугольника (прочее) ]
[ Площадь треугольника (прочее) ]
[ Задачи-шутки ]
Сложность: 2-
Классы: 5,6,7,8

Чему равна площадь треугольника со сторонами 18, 17, 35?
Прислать комментарий     Решение


Задача 35625

Темы:   [ Арифметика. Устный счет и т.п. ]
[ Задачи на работу ]
[ Задачи-шутки ]
Сложность: 2
Классы: 7,8,9

Яблоко плавает на воде так, что 1/5 часть яблока находится над водой, а 4/5 – под водой. Под водой яблоко начинает есть рыбка со скоростью 120 г/мин., одновременно над водой яблоко начинает есть птичка со скоростью 60 г/мин. Какая часть яблока достанется рыбке, а какая – птичке?

Прислать комментарий     Решение

Задача 88124

Темы:   [ Задачи на движение ]
[ Перебор случаев ]
[ Задачи-шутки ]
Сложность: 2
Классы: 5,6,7

Расстояние между Атосом и Арамисом, скачущими по одной дороге, равно 20 лье. За час Атос покрывает 4 лье, а Арамис – 5 лье.
Какое расстояние будет между ними через час?

Прислать комментарий     Решение

Задача 88134

Темы:   [ Лингвистика ]
[ Криптография ]
[ Задачи-шутки ]
Сложность: 2
Классы: 5,6,7

Найдите ключ к "тарабарской грамоте"  — тайнописи, применявшейся ранее в России для дипломатической переписки: "Пайцике тсюг т "`камащамлтой чмароке"'  — кайпонили, нмирепяшвейля мапее ш Моллии цся цинсоракигелтой неменилти".
Прислать комментарий     Решение


Задача 98627

 [Волки и бараны]
Темы:   [ Арифметика. Устный счет и т.п. ]
[ Задачи на работу ]
[ Задачи-шутки ]
Сложность: 2+
Классы: 5,6,7,8

7 волков съедают 7 баранов за 7 дней. За сколько дней 9 волков съедят 9 баранов?

Прислать комментарий     Решение

Страница: << 2 3 4 5 6 7 8 [Всего задач: 40]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .