Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 8 задач
Версия для печати
Убрать все задачи

К описанной окружности треугольника $ABC$ проведены касательные в точках $B$ и $C$. Лучи $CC_1$, $BB_1$, где $B_1$ и $C_1$ – середины сторон $AC$ и $AB$, пересекают эти касательные в точках $K$ и $L$ соответственно. Докажите, что $\angle BAK=\angle CAL$.

Вниз   Решение


Дано натуральное число $n > 1$. Назовём положительную обыкновенную дробь (не обязательно несократимую) хорошей, если сумма её числителя и знаменателя равна $n$. Докажите, что любую положительную обыкновенную дробь, знаменатель которой меньше $n$, можно выразить через хорошие дроби (не обязательно различные) с помощью операций сложения и вычитания тогда и только тогда, когда $n$ — простое число.

Напомним, что обыкновенная дробь — это отношение целого числа к натуральному.

ВверхВниз   Решение


Автор: Якубов А.

В треугольнике ABC медианы AMA, BMB и CMC пересекаются в точке M. Построим окружность ΩA, проходящую через середину отрезка AM и касающуюся отрезка BC в точке MA. Аналогично строятся окружности ΩB и ΩC. Докажите, что окружности ΩA, ΩB и ΩC имеют общую точку.

ВверхВниз   Решение


В круг радиуса 1 помещено два треугольника, площадь каждого из которых больше 1. Докажите, что эти треугольники пересекаются.

ВверхВниз   Решение


Многоугольник площади B вписан в окружность площади A и описан вокруг окружности площади C. Докажите, что  2B $ \leq$ A + C.

ВверхВниз   Решение


Существует ли а) ограниченная, б) неограниченная фигура на плоскости, имеющая среди своих осей симметрии две параллельные несовпадающие прямые?

ВверхВниз   Решение


Автор: Фольклор

При каком натуральном K величина     достигает максимального значения?

ВверхВниз   Решение


Сколько осей симметрии может быть у треугольника?

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 563]      



Задача 35633

Темы:   [ Свойства симметрий и осей симметрии ]
[ Биссектриса угла ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 2+
Классы: 8,9

Сколько осей симметрии может быть у треугольника?

Прислать комментарий     Решение

Задача 35121

Тема:   [ Свойства симметрий и осей симметрии ]
Сложность: 2+
Классы: 9,10

Существует ли а) ограниченная, б) неограниченная фигура на плоскости, имеющая среди своих осей симметрии две параллельные несовпадающие прямые?
Прислать комментарий     Решение


Задача 102792

Темы:   [ Осевая и скользящая симметрии ]
[ ГМТ - прямая или отрезок ]
Сложность: 2+
Классы: 7,8,9

Найти множество точек. Даны две точки А и В. Найти множество точек, каждая из которых является симметричным образом точки А относительно некоторой прямой, проходящей через точку В.
Прислать комментарий     Решение


Задача 32026

Темы:   [ Симметрия помогает решить задачу ]
[ Отношение площадей треугольников с общим основанием или общей высотой ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3-
Классы: 8,9

Точка M внутри выпуклого четырехугольника ABCD такова, что площади треугольников ABM, BCM, CDM и DAM равны. Верно ли, что ABCD — параллелограмм, а точка M — точка пересечения его диагоналей?

Прислать комментарий     Решение

Задача 35545

Тема:   [ Свойства симметрий и осей симметрии ]
Сложность: 3-
Классы: 8,9

Фигура на плоскости имеет ровно две оси симметрии. Найдите угол между этими осями.

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 563]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .