ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Докажите, что биссектрисы треугольника пересекаются в одной точке. Известно, что при любом целом K ≠ 27 число a – K³ делится на 27 – K. Найти a. На сторонах BC, CA и AB треугольника ABC взяты
точки A1, B1 и C1, причем
AC1 = AB1, BA1 = BC1 и CA1 = CB1.
Докажите, что A1, B1 и C1 — точки касания вписанной
окружности со сторонами.
На высоте AH треугольника ABC взята точка M. Докажите, что AB² – AC² = MB² – MC². На сторонах AB, BC, CA правильного треугольника ABC
взяты точки P, Q, R так, что AP : PB = BQ : QC = CR : RA = 2 : 1. Известно, что при любом целом K ≠ 27 число a – K1964 делится без остатка на 27 – K. Найти a. Найдите наименьшее натуральное число n, для которого выполнено следующее условие: если число p – простое и n делится на p – 1, то n делится на p. На диске хранится 2013 файлов размером 1 Мб, 2 Мб, 3 Мб, ..., 2012 Мб, 2013 Мб. Можно ли их распределить по трём папкам так, чтобы в каждой папке было одинаковое количество файлов и все три папки имели один и тот же размер (в Мб)? Докажите, что треугольник ABC равнобедренный, если у него:
С помощью циркуля и линейки постройте трапецию по основаниям и диагоналям.
Дано бесконечное число углов. Докажите, что этими углами можно покрыть плоскость. |
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 71]
Круг радиуса 1 покрыт семью одинаковыми кругами. Докажите, что их радиус не меньше ½.
Окружность покрыта несколькими дугами. Эти дуги могут налегать друг на друга, но ни одна из них не покрывает окружность целиком. Доказать, что всегда можно выбрать несколько из этих дуг так, чтобы они тоже покрывали всю окружность и составляли в сумме не более 720o .
Круг радиуса 1 покрыт семью одинаковыми кругами. Докажите, что их радиусы не меньше ½.
Известно, что множество M точек на прямой может быть покрыто тремя отрезками длины 1.
Дано бесконечное число углов. Докажите, что этими углами можно покрыть плоскость.
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 71]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке