Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 11 задач
Версия для печати
Убрать все задачи

Докажите, что биссектрисы треугольника пересекаются в одной точке.

Вниз   Решение


Известно, что при любом целом  K ≠ 27  число  a – K³  делится на  27 – K. Найти a.

ВверхВниз   Решение


На сторонах BC, CA и AB треугольника ABC взяты точки A1, B1 и C1, причем  AC1 = AB1, BA1 = BC1 и CA1 = CB1. Докажите, что A1, B1 и C1 — точки касания вписанной окружности со сторонами.

ВверхВниз   Решение


На высоте AH треугольника ABC взята точка M. Докажите, что  AB² – AC² = MB² – MC².

ВверхВниз   Решение


На сторонах  AB, BC, CA правильного треугольника ABC взяты точки P, Q, R так, что  AP : PB = BQ : QC = CR : RA = 2 : 1.
Докажите, что стороны треугольника PQR перпендикулярны сторонам треугольника ABC.

ВверхВниз   Решение


Известно, что при любом целом  K ≠ 27  число  a – K1964  делится без остатка на  27 – K. Найти a.

ВверхВниз   Решение


Найдите наименьшее натуральное число n, для которого выполнено следующее условие: если число p – простое и n делится на  p – 1,  то n делится на p.

ВверхВниз   Решение


На диске хранится 2013 файлов размером 1 Мб, 2 Мб, 3 Мб, ..., 2012 Мб, 2013 Мб. Можно ли их распределить по трём папкам так, чтобы в каждой папке было одинаковое количество файлов и все три папки имели один и тот же размер (в Мб)?

ВверхВниз   Решение


Докажите, что треугольник ABC равнобедренный, если у него:
  а) медиана BD является высотой;
  б) высота BD является биссектрисой.

ВверхВниз   Решение


С помощью циркуля и линейки постройте трапецию по основаниям и диагоналям.

ВверхВниз   Решение


Дано бесконечное число углов. Докажите, что этими углами можно покрыть плоскость.

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 71]      



Задача 97935

Темы:   [ Покрытия ]
[ Связь величины угла с длиной дуги и хорды ]
[ Доказательство от противного ]
Сложность: 3
Классы: 7,8,9

Автор: Фольклор

Круг радиуса 1 покрыт семью одинаковыми кругами. Докажите, что их радиус не меньше ½.

Прислать комментарий     Решение

Задача 109018

Темы:   [ Покрытия ]
[ Принцип Дирихле (углы и длины) ]
Сложность: 3
Классы: 7,8,9

Окружность покрыта несколькими дугами. Эти дуги могут налегать друг на друга, но ни одна из них не покрывает окружность целиком. Доказать, что всегда можно выбрать несколько из этих дуг так, чтобы они тоже покрывали всю окружность и составляли в сумме не более 720o .
Прислать комментарий     Решение


Задача 34975

Темы:   [ Покрытия ]
[ Связь величины угла с длиной дуги и хорды ]
Сложность: 3+
Классы: 8,9,10

Круг радиуса 1 покрыт семью одинаковыми кругами. Докажите, что их радиусы не меньше ½.

Прислать комментарий     Решение

Задача 35536

Тема:   [ Покрытия ]
Сложность: 3+
Классы: 8,9,10

Известно, что множество M точек на прямой может быть покрыто тремя отрезками длины 1.
Каким наименьшим числом отрезков длины 1 можно заведомо покрыть множество середин отрезков с концами в точках множества M?

Прислать комментарий     Решение

Задача 35651

Темы:   [ Покрытия ]
[ Прямые, лучи, отрезки и углы (прочее) ]
Сложность: 3+
Классы: 8,9,10

Дано бесконечное число углов. Докажите, что этими углами можно покрыть плоскость.

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 71]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .