ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Написанное на доске четырехзначное число можно заменить на другое, прибавив к двум его соседним цифрам по единице, если ни одна из этих цифр не равна 9; либо, вычтя из соседних двух цифр по единице, если ни одна из них не равна 0. Можно ли с помощью таких операций из числа 1234 получить число 2002?

   Решение

Задачи

Страница: << 108 109 110 111 112 113 114 >> [Всего задач: 737]      



Задача 102990

Темы:   [ Задачи на работу ]
[ Теория алгоритмов (прочее) ]
[ Оценка + пример ]
Сложность: 3-
Классы: 5,6,7

12 кузнецов должны подковать 15 лошадей. Каждый кузнец тратит на одну подкову 5 минут. Какое наименьшее время они должны потратить на работу? (Учтите, лошадь не может стоять на двух ногах.)

Прислать комментарий     Решение

Задача 103966

Темы:   [ Раскладки и разбиения ]
[ Теория алгоритмов (прочее) ]
[ Периодичность и непериодичность ]
Сложность: 3-
Классы: 7,8,9


В Монголии имеются в обращении монеты в 3 и 5 тугриков. Входной билет в центральный парк стоит 4 тугрика. Как-то раз перед открытием в кассу парка выстроилась очередь из 200 посетителей. У каждого из них, а также у кассира есть ровно 22 тугрика. Докажите, что все посетители смогут купить билет в порядке очереди.

Прислать комментарий     Решение

Задача 116385

Темы:   [ Делимость чисел. Общие свойства ]
[ Теория алгоритмов (прочее) ]
Сложность: 3-
Классы: 8,9

Саша пишет на доске последовательность натуральных чисел. Первое число  N > 1  написано заранее. Новые натуральные числа он получает так: вычитает из последнего записанного числа или прибавляет к нему любой его делитель, больший 1. При любом ли натуральном  N > 1  Саша сможет написать на доске в какой-то момент число 2011?

Прислать комментарий     Решение

Задача 30312

Темы:   [ Четность и нечетность ]
[ Взвешивания ]
Сложность: 3
Классы: 7,8,9

Есть 101 монета, из которых 50 фальшивых, отличающихся по весу на 1 грамм от настоящих. Петя взял одну монету и за одно взвешивание на весах со стрелкой, показывающей разность весов на чашках, хочет определить фальшивая ли она. Сможет ли он это сделать?

Прислать комментарий     Решение

Задача 35754

Темы:   [ Инварианты и полуинварианты ]
[ Теория алгоритмов (прочее) ]
Сложность: 3
Классы: 8,9

Написанное на доске четырехзначное число можно заменить на другое, прибавив к двум его соседним цифрам по единице, если ни одна из этих цифр не равна 9; либо, вычтя из соседних двух цифр по единице, если ни одна из них не равна 0. Можно ли с помощью таких операций из числа 1234 получить число 2002?
Прислать комментарий     Решение


Страница: << 108 109 110 111 112 113 114 >> [Всего задач: 737]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .