ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

В окружность радиуса 2$ \sqrt{7}$ вписана трапеция ABCD, причём её основание AD является диаметром, а угол BAD равен 60o. Хорда CE пересекает диаметр AD в точке P, причём AP : PD = 1 : 3. Найдите площадь треугольника BPE.

   Решение

Задачи

Страница: << 14 15 16 17 18 19 20 >> [Всего задач: 401]      



Задача 52348

Темы:   [ Произведение длин отрезков хорд и длин отрезков секущих ]
[ Отношение площадей треугольников с общим основанием или общей высотой ]
[ Равнобедренные, вписанные и описанные трапеции ]
Сложность: 3+
Классы: 8,9

В окружность радиуса 2$ \sqrt{7}$ вписана трапеция ABCD, причём её основание AD является диаметром, а угол BAD равен 60o. Хорда CE пересекает диаметр AD в точке P, причём AP : PD = 1 : 3. Найдите площадь треугольника BPE.

Прислать комментарий     Решение


Задача 52349

Темы:   [ Произведение длин отрезков хорд и длин отрезков секущих ]
[ Отношение площадей треугольников с общим основанием или общей высотой ]
[ Равнобедренные, вписанные и описанные трапеции ]
Сложность: 3+
Классы: 8,9

Около трапеции KLMN описана окружность, причём основание KN является её диаметром. Известно, что KN = 4, LM = 2. Хорда MT пересекает диаметр KN в точке S, причём KS : SN = 1 : 3. Найдите площадь треугольника STN.

Прислать комментарий     Решение


Задача 52442

Темы:   [ Произведение длин отрезков хорд и длин отрезков секущих ]
[ Средняя линия треугольника ]
Сложность: 3+
Классы: 8,9

В прямоугольном треугольнике ABC с катетами AB = 3 и BC = 4 через середины сторон AB и AC проведена окружность, касающаяся катета BC. Найдите длину отрезка гипотенузы AC, который лежит внутри этой окружности.

Прислать комментарий     Решение


Задача 52445

Темы:   [ Произведение длин отрезков хорд и длин отрезков секущих ]
[ Отношение площадей треугольников с общим основанием или общей высотой ]
Сложность: 3+
Классы: 8,9

Каждая из боковых сторон AB и BC равнобедренного треугольника ABC разделена на три равные части, и через четыре точки деления на этих сторонах проведена окружность, высекающая на основании AC хорду DE. Найдите отношение площадей треугольников ABC и BDE, если AB = BC = 3 и AC = 4.

Прислать комментарий     Решение


Задача 52446

Темы:   [ Диаметр, основные свойства ]
[ Теорема о длинах касательной и секущей; произведение всей секущей на ее внешнюю часть ]
Сложность: 3+
Классы: 8,9

В треугольнике ABC известно, что AB = $ \sqrt{14}$ и BC = 2. Окружность проведена через точку B, через середину D отрезка BC, через точку E на отрезке AB и касается стороны AC. Найдите отношение, в котором эта окружность делит отрезок AB, если DE — диаметр этой окружности.

Прислать комментарий     Решение


Страница: << 14 15 16 17 18 19 20 >> [Всего задач: 401]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .