ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

На дуге BC описанной окружности равностороннего треугольника ABC взята точка P. Отрезки AP и BC пересекаются в точке Q. Докажите, что  1/PQ = 1/PB + 1/PC.

   Решение

Задачи

Страница: << 87 88 89 90 91 92 93 >> [Всего задач: 512]      



Задача 52791

Темы:   [ Признаки и свойства касательной ]
[ Окружность, вписанная в угол ]
[ Теорема Пифагора (прямая и обратная) ]
[ Вспомогательные подобные треугольники ]
Сложность: 3
Классы: 8,9

На основании равнобедренного треугольника, равном 8, как на хорде построена окружность, касающаяся боковых сторон треугольника.
Найдите радиус окружности, если высота, опущенная на основание треугольника, равна 3.

Прислать комментарий     Решение

Задача 61335

 [Метод Архимеда]
Темы:   [ Окружности (прочее) ]
[ Вписанные и описанные многоугольники ]
[ Правильные многоугольники ]
[ Вспомогательные подобные треугольники ]
[ Применение тригонометрических формул (геометрия) ]
[ Тождественные преобразования (тригонометрия) ]
Сложность: 3
Классы: 9,10,11

Рассмотрим окружность радиуса 1. Опишем около нее и впишем в нее правильные n-угольники. Обозначим их периметры через Pn (для описанного) и pn (для вписанного).
   а) Найдите P4, p4, P6 и p6.
   б) Докажите, что справедливы следующие рекуррентные соотношения:    P2n = ,        p2n =         (n ≥ 3).
   в) Найдите P96 и p96. Докажите неравенства   310/71 < π < 31/7.

Прислать комментарий     Решение

Задача 66655

Темы:   [ Прямоугольные треугольники (прочее) ]
[ Вписанные четырехугольники (прочее) ]
[ Симметрия помогает решить задачу ]
[ Вспомогательные подобные треугольники ]
Сложность: 3
Классы: 9,10,11

Дан треугольник $ABC$ с прямым углом $C$. Точки $K$, $L$, $M$ – середины сторон $AB$, $BC$, $CA$ соответственно, $N$ – точка на стороне $AB$. Прямая $CN$ пересекает $KM$ и $KL$ в точках $P$ и $Q$. Точки $S$, $T$ на сторонах $AC$, $BC$ таковы, что четырехугольники $APQS$, $BPQT$ – вписанные. Докажите, что

а) если $CN$ – биссектриса, то прямые $CN$, $ML$, $ST$ пересекаются в одной точке;

б) если $CN$ – высота, то $ST$ проходит через середину $ML$.

Прислать комментарий     Решение

Задача 116483

Темы:   [ Трапеции (прочее) ]
[ Средняя линия треугольника ]
[ Признаки и свойства параллелограмма ]
[ Вспомогательные подобные треугольники ]
[ Свойства медиан. Центр тяжести треугольника. ]
Сложность: 3
Классы: 7,8,9

В трапеции ABCD основание AD в четыре раза больше чем BC. Прямая, проходящая через середину диагонали BD и параллельная AB, пересекает сторону CD в точке K. Найдите отношение DK : KC.

Прислать комментарий     Решение

Задача 52356

Темы:   [ Правильный (равносторонний) треугольник ]
[ Вписанные и описанные окружности ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Вспомогательные подобные треугольники ]
Сложность: 3+
Классы: 8,9

На дуге BC описанной окружности равностороннего треугольника ABC взята точка P. Отрезки AP и BC пересекаются в точке Q. Докажите, что  1/PQ = 1/PB + 1/PC.

Прислать комментарий     Решение

Страница: << 87 88 89 90 91 92 93 >> [Всего задач: 512]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .