ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 86 87 88 89 90 91 92 >> [Всего задач: 512]      



Задача 64749

Темы:   [ Вписанные и описанные окружности ]
[ Построение треугольников по различным точкам ]
[ Вспомогательные подобные треугольники ]
[ Соображения непрерывности ]
[ Доказательство от противного ]
[ Теоремы Чевы и Менелая ]
Сложность: 5-
Классы: 10,11

Автор: Белухов Н.

Вокруг треугольника ABC описали окружность k. На сторонах треугольника отметили три точки A1, B1 и C1, после чего сам треугольник стёрли. Докажите, что его можно однозначно восстановить тогда и только тогда, когда прямые AA1, BB1 и CC1 пересекаются в одной точке.

Прислать комментарий     Решение

Задача 66317

Темы:   [ Вписанные и описанные окружности ]
[ Построения одной линейкой ]
[ Вспомогательные подобные треугольники ]
[ Применение проективных преобразований, сохраняющих окружность ]
[ Индукция в геометрии ]
[ Принцип Дирихле (прочее) ]
Сложность: 5
Классы: 10,11

На плоскости нарисованы неравнобедренный треугольник ABC и вписанная в него окружность ω. Пользуясь только линейкой и проведя не более восьми линий, постройте на ω такие точки A′, B′, C′, что лучи B′C′, C′A′, A′B′ проходят через A, B, C соответственно.

Прислать комментарий     Решение

Задача 66811

Темы:   [ Точка Микеля ]
[ Поворотная гомотетия (прочее) ]
[ Вспомогательные подобные треугольники ]
[ Теоремы Чевы и Менелая ]
[ Изогональное сопряжение ]
Сложность: 5
Классы: 9,10,11

Автор: Bhattacharya A.

Пусть точки $P$ и $Q$ изогонально сопряжены относительно треугольника $ABC$. Точка $A_1$, лежащая на дуге $BC$ описанной около треугольника окружности $\omega$, удовлетворяет условию $\angle BA_1P=\angle CA_1Q$. Точки $B_1$ и $C_1$ определены аналогично. Докажите, что прямые $AA_1$, $BB_1$ и $CC_1$ пересекаются в одной точке.
Прислать комментарий     Решение


Задача 67251

Темы:   [ Инверсия помогает решить задачу ]
[ Радикальная ось ]
[ Вспомогательные подобные треугольники ]
[ Теорема синусов ]
Сложность: 5
Классы: 9,10,11

Автор: Tran Quang Hung

Пусть $E$ – проекция вершины $C$ прямоугольника $ABCD$ на диагональ $BD$. Докажите, что общие внешние касательные к окружностям $AEB$ и $AED$ пересекаются на окружности $AEC$.
Прислать комментарий     Решение


Задача 67225

Темы:   [ Изогональное сопряжение ]
[ Проективная геометрия (прочее) ]
[ Вспомогательные подобные треугольники ]
[ Четыре точки, лежащие на одной окружности ]
Сложность: 5+
Классы: 9,10,11

Автор: Шевцов А.

В треугольнике $ABC$ проведена медиана $AM$ и на ней выбрана точка $D$. Касательные, проведенные к описанной окружности треугольника $BDC$ в точках $B$ и $C$, пересекаются в точке $K$. Докажите, что $DD'$ параллельно $AK$, где $D'$ – точка, изогонально сопряжённая точке $D$ относительно треугольника $ABC$.
Прислать комментарий     Решение


Страница: << 86 87 88 89 90 91 92 >> [Всего задач: 512]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .