ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Каждая из боковых сторон AB и BC равнобедренного треугольника ABC разделена на три равные части, и через четыре точки деления на этих сторонах проведена окружность, высекающая на основании AC хорду DE. Найдите отношение площадей треугольников ABC и BDE, если AB = BC = 3 и AC = 4. Решение |
Страница: << 14 15 16 17 18 19 20 >> [Всего задач: 401]
В окружность радиуса 2 вписана трапеция ABCD, причём её основание AD является диаметром, а угол BAD равен 60o. Хорда CE пересекает диаметр AD в точке P, причём AP : PD = 1 : 3. Найдите площадь треугольника BPE.
Около трапеции KLMN описана окружность, причём основание KN является её диаметром. Известно, что KN = 4, LM = 2. Хорда MT пересекает диаметр KN в точке S, причём KS : SN = 1 : 3. Найдите площадь треугольника STN.
В прямоугольном треугольнике ABC с катетами AB = 3 и BC = 4 через середины сторон AB и AC проведена окружность, касающаяся катета BC. Найдите длину отрезка гипотенузы AC, который лежит внутри этой окружности.
Каждая из боковых сторон AB и BC равнобедренного треугольника ABC разделена на три равные части, и через четыре точки деления на этих сторонах проведена окружность, высекающая на основании AC хорду DE. Найдите отношение площадей треугольников ABC и BDE, если AB = BC = 3 и AC = 4.
В треугольнике ABC известно, что AB = и BC = 2. Окружность проведена через точку B, через середину D отрезка BC, через точку E на отрезке AB и касается стороны AC. Найдите отношение, в котором эта окружность делит отрезок AB, если DE — диаметр этой окружности.
Страница: << 14 15 16 17 18 19 20 >> [Всего задач: 401] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|