ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Тема:
Все темы
>>
Геометрия
>>
Планиметрия
>>
Окружности
>>
Вписанный угол
>>
Вписанный угол равен половине центрального
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи На сторонах AB, BC и AC треугольника ABC взяты соответственно точки D, E и F так, что DE = BE, FE = CE. Докажите, что центр описанной около треугольника ADF окружности лежит на биссектрисе угла DEF. Решение |
Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 207]
На сторонах AB, BC и AC треугольника ABC взяты соответственно точки D, E и F так, что DE = BE, FE = CE. Докажите, что центр описанной около треугольника ADF окружности лежит на биссектрисе угла DEF.
Через точку A , лежащую на окружности с центром O, проведены диаметр AB и хорда AC. Докажите, что угол BAC вдвое меньше угла BOC.
Окружность касается одной из сторон угла в его вершине A и пересекает другую сторону в точке B. Угол равен 40°, M – точка на меньшей дуге AB.
б) Вершина угла BAC расположена внутри окружности. Докажите, что величина угла BAC равна полусумме угловых величин дуг окружности, заключенных внутри угла BAC и внутри угла, симметричного ему относительно вершины A.
Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 207] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|