Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 7 задач
Версия для печати
Убрать все задачи

Изначально на столе лежат три кучки из 100, 101 и 102 камней соответственно. Илья и Костя играют в следующую игру. За один ход каждый из них может взять себе один камень из любой кучи, кроме той, из которой он брал камень на своем предыдущем ходе (при своём первом ходе каждый игрок может брать камень из любой кучки). Ходы игроки делают по очереди, начинает Илья. Проигрывает тот, кто не может сделать ход. Кто из игроков может выиграть, как бы ни играл соперник?

Вниз   Решение


Автор: Фольклор

Коэффициенты квадратного уравнения  x² + px + q = 0  изменили не больше чем на 0,001.
Может ли больший корень уравнения измениться больше, чем на 1000?

ВверхВниз   Решение


Имеется куб размером 10×10×10, состоящий из маленьких единичных кубиков. В центре O одного из угловых кубиков сидит кузнечик. Он может прыгать в центр кубика, имеющего общую грань с тем, в котором кузнечик находится в данный момент; причём так, чтобы расстояние до точки O увеличивалось. Сколькими способами кузнечик может допрыгать до кубика, противоположного исходному?

ВверхВниз   Решение


Решите уравнение в целых числах:  x³ + 3 = 4y(y + 1).

ВверхВниз   Решение


Докажите, что среди четырехугольников с заданными длинами диагоналей и углом между ними наименьший периметр имеет параллелограмм.

ВверхВниз   Решение


Найдите радиус окружности, описанной около равнобедренной трапеции с основаниями 2 и 14 и боковой стороной 10.

ВверхВниз   Решение


Диагонали выпуклого четырёхугольника взаимно перпендикулярны. Докажите, что четыре проекции точки пересечения диагоналей на стороны четырёхугольника лежат на одной окружности.

Вверх   Решение

Задачи

Страница: << 29 30 31 32 33 34 35 >> [Всего задач: 306]      



Задача 52503

Темы:   [ Вспомогательная окружность ]
[ Вписанный угол, опирающийся на диаметр ]
[ Вписанные четырехугольники (прочее) ]
Сложность: 4
Классы: 8,9

Диагонали выпуклого четырёхугольника взаимно перпендикулярны. Докажите, что четыре проекции точки пересечения диагоналей на стороны четырёхугольника лежат на одной окружности.

Прислать комментарий     Решение


Задача 52858

Темы:   [ Вспомогательная окружность ]
[ Вписанный угол, опирающийся на диаметр ]
[ Вспомогательные равные треугольники ]
[ Прямоугольники и квадраты. Признаки и свойства ]
Сложность: 4
Классы: 8,9

Дан квадрат ABCD. Точки P и Q лежат на сторонах AB и BC соответственно, причём  BP = BQ.  Пусть H – основание перпендикуляра, опущенного из точки B на отрезок PC. Докажите, что угол DHQ – прямой.

Прислать комментарий     Решение

Задача 53074

Темы:   [ Произведение длин отрезков хорд и длин отрезков секущих ]
[ Вписанный угол, опирающийся на диаметр ]
Сложность: 4
Классы: 8,9

Окружность радиуса R, проведённая через вершины A, B и C прямоугольной трапеции ABCD ( $ \angle$A = $ \angle$B = 90o) пересекает отрезки AD и CD соответственно в точках M и N, причём AM : AD = CN : CD = 1 : 3. Найдите площадь трапеции.

Прислать комментарий     Решение


Задача 53103

Темы:   [ Углы, опирающиеся на равные дуги и равные хорды ]
[ Вписанный угол, опирающийся на диаметр ]
[ Тригонометрические соотношения в прямоугольном треугольнике ]
Сложность: 4
Классы: 8,9

Около треугольника ABC описана окружность. Диаметр AD пересекает сторону BC в точке E, при этом AE = AC и BE : CE = m. Найдите отношение DE к AE.

Прислать комментарий     Решение


Задача 53162

Темы:   [ Серединный перпендикуляр к отрезку (ГМТ) ]
[ Вписанный угол, опирающийся на диаметр ]
Сложность: 4
Классы: 8,9

Около треугольника AMB описана окружность, центр которой удалён от стороны AM на расстояние 10. Продолжение стороны AM за вершину M отсекает от касательной к окружности, проведённой через вершину B , отрезок CB , равный 29. Найдите площадь треугольника CMB , если известно, что угол ACB равен arctg .
Прислать комментарий     Решение


Страница: << 29 30 31 32 33 34 35 >> [Всего задач: 306]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .