ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Даны две окружности. Их общие внутренние касательные взаимно перпендикулярны. Хорды, соединяющие точки касания, равны 3 и 5. Найдите расстояние между центрами окружностей.

   Решение

Задачи

Страница: << 64 65 66 67 68 69 70 >> [Всего задач: 769]      



Задача 66952

Темы:   [ Касающиеся окружности ]
[ Теорема о длинах касательной и секущей; произведение всей секущей на ее внешнюю часть ]
[ Вспомогательные подобные треугольники ]
Сложность: 3
Классы: 8,9,10,11

Автор: Бибиков П.

Рассмотрим две окружности $\Omega$ и $\omega$, касающиеся друг друга внутренним образом в точке $A$. Пусть хорда $BC$ окружности $\Omega$ касается окружности $\omega$ в точке $K$. Пусть также $O$ – центр $\omega$. Тогда окружность $BOC$ делит отрезок $AK$ пополам.
Прислать комментарий     Решение


Задача 108560

Темы:   [ Метод координат на плоскости ]
[ Признаки и свойства касательной ]
Сложность: 3
Классы: 8,9

Составьте уравнение окружности с центром в точке M(3;2), касающейся прямой y = 2x + 6.

Прислать комментарий     Решение


Задача 35458

Темы:   [ Вписанные и описанные окружности ]
[ Две касательные, проведенные из одной точки ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Сумма углов треугольника. Теорема о внешнем угле. ]
Сложность: 3+
Классы: 8,9

Стороны BC, CA, AB треугольника ABC касаются вписанной в него окружности в точках D, E, F. Докажите, что треугольник DEF – остроугольный.

Прислать комментарий     Решение

Задача 52438

Темы:   [ Теорема синусов ]
[ Теорема о длинах касательной и секущей; произведение всей секущей на ее внешнюю часть ]
Сложность: 3+
Классы: 8,9

Окружность радиуса R с центром в точке O проходит через вершины A и B треугольника ABC, пересекает отрезок BC в точке M и касается прямой AC в точке A. Найдите CM, зная, что  ∠ACO = α,  ∠MAB = β.

Прислать комментарий     Решение

Задача 52543

Темы:   [ Общая касательная к двум окружностям ]
[ Признаки и свойства касательной ]
[ Прямоугольники и квадраты. Признаки и свойства ]
Сложность: 3+
Классы: 8,9

Даны две окружности. Их общие внутренние касательные взаимно перпендикулярны. Хорды, соединяющие точки касания, равны 3 и 5. Найдите расстояние между центрами окружностей.

Прислать комментарий     Решение


Страница: << 64 65 66 67 68 69 70 >> [Всего задач: 769]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .