ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

С помощью циркуля и линейки проведите через данную точку прямую, отсекающую от данного угла треугольник заданного периметра.

   Решение

Задачи

Страница: << 44 45 46 47 48 49 50 >> [Всего задач: 769]      



Задача 78296

Темы:   [ Признаки и свойства касательной ]
[ Вписанные четырехугольники (прочее) ]
[ Признаки и свойства параллелограмма ]
Сложность: 4+
Классы: 9,10

Две окружности O1 и O2 пересекаются в точках M и P. Обозначим через MA хорду окружности O1, касающуюся окружности O2 в точке M, а через MB — хорду окружности O2, касающуюся окружности O1 в точке M. На прямой MP отложен отрезок PH = MP. Доказать, что четырёхугольник MAHB можно вписать в окружность.
Прислать комментарий     Решение


Задача 52686

Темы:   [ Две касательные, проведенные из одной точки ]
[ Построения ]
Сложность: 4+
Классы: 8,9

С помощью циркуля и линейки проведите через данную точку прямую, отсекающую от данного угла треугольник заданного периметра.

Прислать комментарий     Решение


Задача 52745

Темы:   [ Две касательные, проведенные из одной точки ]
[ Вписанные и описанные окружности ]
[ Прямоугольники и квадраты. Признаки и свойства ]
Сложность: 4+
Классы: 8,9

Высота, опущенная из вершины прямого угла на гипотенузу, делит треугольник на два треугольника, в каждый из которых вписана окружность. Найдите углы и площадь треугольника, образованного катетами исходного треугольника и прямой, проходящей через центры этих окружностей, если высота исходного треугольника равна h.

Прислать комментарий     Решение


Задача 53095

Темы:   [ Теорема о длинах касательной и секущей; произведение всей секущей на ее внешнюю часть ]
[ Средние пропорциональные в прямоугольном треугольнике ]
Сложность: 4+
Классы: 8,9

В ромбе ABCD угол BAD — острый. Окружность, вписанная в этот ромб, касается сторон AB и CD в точках M и N соответственно и пересекает отрезок CM в точке P, а отрезок BN — в точке Q. Найдите отношение BQ к QN, если CP : PM = 9 : 16.

Прислать комментарий     Решение


Задача 55592

Темы:   [ Окружность, вписанная в угол ]
[ Окружности (построения) ]
Сложность: 4+
Классы: 8,9

Даны прямая l и точки A и B по разные стороны от неё. С помощью циркуля и линейки постройте такую точку M, что угол между AM и l в два раза меньше угла между BM и l, если известно, что эти углы не имеют общих сторон.

Прислать комментарий     Решение


Страница: << 44 45 46 47 48 49 50 >> [Всего задач: 769]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .