ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Периметр треугольника ABC равен 8. В треугольник вписана окружность и к ней проведена касательная, параллельная стороне AB. Отрезок этой касательной, заключённый между сторонами AC и CB, равен 1. Найдите сторону AB. Решение |
Страница: << 19 20 21 22 23 24 25 >> [Всего задач: 283]
Пусть r — радиус окружности, вписанной в прямоугольный треугольник с катетами a, b и гипотенузой c. Докажите, что
r = .
Пусть r — радиус окружности, касающейся гипотенузы и продолжения катетов прямоугольного треугольника со сторонами a, b, c. Докажите, что r = .
Периметр треугольника ABC равен 8. В треугольник вписана окружность и к ней проведена касательная, параллельная стороне AB. Отрезок этой касательной, заключённый между сторонами AC и CB, равен 1. Найдите сторону AB.
В треугольнике ABC со сторонами AB = 3, BC = 4 и AC = 5 проведена биссектриса BD. В треугольники ABD и BCD вписаны окружности, которые касаются BD в точках M и N соответственно. Найдите MN.
В прямоугольный треугольник, периметр которого равен 36, вписана окружность. Гипотенуза делится точкой касания в отношении 2 : 3.
Страница: << 19 20 21 22 23 24 25 >> [Всего задач: 283] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|