ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Даны две непересекающиеся окружности радиусов R и 2R. К ним проведены общие касательные, которые пересекаются в точке A отрезка, соединяющего центры окружностей. Расстояние между центрами окружностей равно 2R. Найдите площадь фигуры, ограниченной отрезками касательных, заключёнными между точками касания и большими дугами окружностей, соединяющими точки касания. Решение |
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 75]
Даны две непересекающиеся окружности. К ним проведены общие касательные, которые пересекаются в точке A отрезка, соединяющего центры окружностей. Радиус меньшей окружности равен R. Расстояние от точки A до центра окружности большего радиуса равно 6R. Точка A делит отрезок касательной, заключённый между точками касания, в отношении 1:3. Найдите площадь фигуры, ограниченной отрезками касательных и большими дугами окружностей, соединяющими точки касания.
Даны две непересекающиеся окружности радиусов R и 2R. К ним проведены общие касательные, которые пересекаются в точке A отрезка, соединяющего центры окружностей. Расстояние между центрами окружностей равно 2R. Найдите площадь фигуры, ограниченной отрезками касательных, заключёнными между точками касания и большими дугами окружностей, соединяющими точки касания.
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 75] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|