Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 11 задач
Версия для печати
Убрать все задачи

В городе Маленьком 15 телефонов. Можно ли их соединить проводами так, чтобы каждый телефон был соединён ровно с пятью другими?

Вниз   Решение


Можно ли нарисовать на плоскости 9 отрезков так, чтобы каждый пересекался ровно с тремя другими?

ВверхВниз   Решение


Вневписанная окружность, соответствующая вершине A прямоугольного треугольника ABC  (∠B = 90°),  касается продолжений сторон AB, AC в точках A1, A2 соответственно; аналогично определим точки C1, C2. Докажите, что перпендикуляры, опущенные из точек A, B, C на прямые C1C2, A1C1, A1A2 соответственно, пересекаются в одной точке.

ВверхВниз   Решение


Сколько существует целых чисел от 0 до 999999, в десятичной записи которых нет двух стоящих рядом одинаковых цифр?

ВверхВниз   Решение


Докажите, что если радиус вневписанной окружности равен полупериметру треугольника, то этот треугольник — прямоугольный.

ВверхВниз   Решение


На сторонах некоторого многоугольника расставлены стрелки.
Докажите, что число вершин, в которые входят две стрелки, равно числу вершин, из которых выходят две стрелки.

ВверхВниз   Решение


Докажите, что при  a, b, c ≥ 0  имеет место неравенство  (ab + bc + ca)² ≥ 3abc(a + b + c).

ВверхВниз   Решение


Сумма двух неотрицательных чисел равна 10. Какое максимальное и какое минимальное значение может принимать сумма их квадратов?

ВверхВниз   Решение


В трапеции ABCD меньшая диагональ BD перпендикулярна к основаниям AD и BC, сумма острых углов A и C равна 90°. Основания  AD = a,  BC = b.
Найдите боковые стороны трапеции.

ВверхВниз   Решение


Какие восемь монет нужно взять, чтобы с их помощью можно было бы без сдачи заплатить любую сумму от 1 коп. до 1 руб.?
(В хождении были монеты в 1, 3, 5, 10, 20 и 50 коп.)

ВверхВниз   Решение


Точка E лежит на продолжении стороны AC правильного треугольника ABC за точку C. Точка K – середина отрезка CE. Прямая, проходящая через точку A перпендикулярно AB, и прямая, проходящая через точку E перпендикулярно BC, пересекаются в точке D. Найдите углы треугольника BKD.

Вверх   Решение

Задачи

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 289]      



Задача 52860

Темы:   [ Вспомогательная окружность ]
[ Прямоугольники и квадраты. Признаки и свойства ]
[ Отрезок, видимый из двух точек под одним углом ]
[ Правильный (равносторонний) треугольник ]
Сложность: 3+
Классы: 8,9

Через вершину C квадрата ABCD проведена прямая, пересекающая диагональ BD в точке K, а серединный перпендикуляр к стороне AB – в точке M (M между C и K). Найдите ∠DCK, если  ∠AKB = ∠AMB.

Прислать комментарий     Решение

Задача 53088

Темы:   [ Вспомогательная окружность ]
[ Вписанный угол, опирающийся на диаметр ]
[ Медиана, проведенная к гипотенузе ]
Сложность: 3+
Классы: 8,9

Точка E лежит на продолжении стороны AC правильного треугольника ABC за точку C. Точка K – середина отрезка CE. Прямая, проходящая через точку A перпендикулярно AB, и прямая, проходящая через точку E перпендикулярно BC, пересекаются в точке D. Найдите углы треугольника BKD.

Прислать комментарий     Решение

Задача 53115

Темы:   [ Вспомогательная окружность ]
[ Биссектриса делит дугу пополам ]
[ Взаимное расположение высот, медиан, биссектрис и проч. ]
Сложность: 3+
Классы: 8,9

Докажите, что в любом неравнобедренном треугольнике биссектриса лежит между медианой и высотой, проведёнными из той же вершины.

Прислать комментарий     Решение

Задача 53201

Темы:   [ Вспомогательная окружность ]
[ Тригонометрические соотношения в прямоугольном треугольнике ]
[ Теорема Пифагора (прямая и обратная) ]
[ Биссектриса угла (ГМТ) ]
Сложность: 3+
Классы: 8,9

Из точки A на биссектрисе угла с вершиной L опущены перпендикуляры AK и AM на стороны угла. На отрезке KM взята точка P (K лежит между Q и L), а прямую ML – в точке S. Известно, что  ∠KLM = α,  KM = a,  QS = b.  Найдите KQ.

Прислать комментарий     Решение

Задача 53302

Темы:   [ Вспомогательная окружность ]
[ Признаки подобия ]
Сложность: 3+
Классы: 8,9

Из вершины C остроугольного треугольника ABC опущена высота CH, а из точки H опущены перпендикуляры HM и HN на стороны BC и AC соответственно. Докажите, что треугольники MNC и ABC подобны.

Прислать комментарий     Решение

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 289]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .